Do you want to publish a course? Click here

An Entropy-based Proof of Threshold Saturation for Nonbinary SC-LDPC Ensembles on the BEC

72   0   0.0 ( 0 )
 Added by Zhonghao Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we are concerned with the asymptotic analysis of nonbinary spatially-coupled low-density parity-check (SC-LDPC) ensembles defined over GL$left(2^{m}right)$ (the general linear group of degree $m$ over GF$left(2right)$). Our purpose is to prove threshold saturation when the transmission takes place on the binary erasure channel (BEC). To this end, we establish the duality rule for entropy for nonbinary variable-node (VN) and check-node (CN) convolutional operators to accommodate the nonbinary density evolution (DE) analysis. Based on this, we construct the explicit forms of the potential functions for uncoupled and coupled DE recursions. In addition, we show that these functions exhibit similar monotonicity properties as those for binary LDPC and SC-LDPC ensembles over general binary memoryless symmetric (BMS) channels. This leads to the threshold saturation theorem and its converse for nonbinary SC-LDPC ensembles on the BEC, following the proof technique developed by S. Kumar et al.



rate research

Read More

Convolutional LDPC ensembles, introduced by Felstrom and Zigangirov, have excellent thresholds and these thresholds are rapidly increasing as a function of the average degree. Several variations on the basic theme have been proposed to date, all of which share the good performance characteristics of convolutional LDPC ensembles. We describe the fundamental mechanism which explains why convolutional-like or spatially coupled codes perform so well. In essence, the spatial coupling of the individual code structure has the effect of increasing the belief-propagation (BP) threshold of the new ensemble to its maximum possible value, namely the maximum-a-posteriori (MAP) threshold of the underlying ensemble. For this reason we call this phenomenon threshold saturation. This gives an entirely new way of approaching capacity. One significant advantage of such a construction is that one can create capacity-approaching ensembles with an error correcting radius which is increasing in the blocklength. Our proof makes use of the area theorem of the BP-EXIT curve and the connection between the MAP and BP threshold recently pointed out by Measson, Montanari, Richardson, and Urbanke. Although we prove the connection between the MAP and the BP threshold only for a very specific ensemble and only for the binary erasure channel, empirically a threshold saturation phenomenon occurs for a wide class of ensembles and channels. More generally, we conjecture that for a large range of graphical systems a similar saturation of the dynamical threshold occurs once individual components are coupled sufficiently strongly. This might give rise to improved algorithms as well as to new techniques for analysis.
In streaming applications, doping improves the performance of spatially-coupled low-density parity-check (SC-LDPC) codes by creating reduced-degree check nodes in the coupled chain. We formulate a scaling law to predict the bit and block error rate of periodically-doped semi-infinite SC-LDPC code ensembles streamed over the binary erasure channel under sliding window decoding for a given finite component block length. The scaling law assumes that with some probability doping is equivalent to full termination and triggers two decoding waves; otherwise, decoding performs as if the coupled chain had not been doped at all. We approximate that probability and use the derived scaling laws to predict the error rates of SC-LDPC code ensembles in the presence of doping. The proposed scaling law provides accurate error rate predictions. We further use it to show that in streaming applications periodic doping can yield higher rates than periodic full termination for the same error-correcting performance.
457 - Igal Sason 2015
This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.
We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation occurs universally in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analysis and stability of density evolution. We analyze the decoder for certain low-density parity-check code ensembles and show that belief propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly affected by saturation and the asymptotic qualitative effect of saturation is similar to reduction of variable node degree by one.
In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner. It requires low computational complexity, offers good system performance and has a fast rate of decoding convergence. Compared to the q-ary sum-product algorithm (QSPA), it provides an attractive candidate for practical applications of q-ary LDPC codes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا