Do you want to publish a course? Click here

Indirect inference for locally stationary ARMA processes with stable innovations

83   0   0.0 ( 0 )
 Added by Shu Wei Chou-Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The class of locally stationary processes assumes that there is a time-varying spectral representation, that is, the existence of finite second moment. We propose the $alpha$-stable locally stationary process by modifying the innovations into stable distributions and the indirect inference to estimate this type of model. Due to the infinite variance, some of interesting properties such as time-varying auto-correlation cannot be defined. However, since the $alpha$-stable family of distributions is closed under linear combination which includes the possibility of handling asymmetry and thicker tails, the proposed model has the same tail behavior throughout the time. In this paper, we propose this new model, present theoretical properties of the process and carry out simulations related to the indirect inference in order to estimate the parametric form of the model. Finally, an empirical application is illustrated.



rate research

Read More

In forecasting problems it is important to know whether or not recent events represent a regime change (low long-term predictive potential), or rather a local manifestation of longer term effects (potentially higher predictive potential). Mathematically, a key question is about whether the underlying stochastic process exhibits memory, and if so whether the memory is long in a precise sense. Being able to detect or rule out such effects can have a profound impact on speculative investment (e.g., in financial markets) and inform public policy (e.g., characterising the size and timescales of the earth systems response to the anthropogenic CO2 perturbation). Most previous work on inference of long memory effects is frequentist in nature. Here we provide a systematic treatment of Bayesian inference for long memory processes via the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short memory effects) can be integrated over in order to focus on long memory parameters and hypothesis testing more directly than ever before. We illustrate our new methodology on both synthetic and observational data, with favorable comparison to the standard estimators.
195 - Zheng Zhao , Rui Gao , Simo Sarkka 2021
This paper is concerned with regularized extensions of hierarchical non-stationary temporal Gaussian processes (NSGPs) in which the parameters (e.g., length-scale) are modeled as GPs. In particular, we consider two commonly used NSGP constructions which are based on explicitly constructed non-stationary covariance functions and stochastic differential equations, respectively. We extend these NSGPs by including $L^1$-regularization on the processes in order to induce sparseness. To solve the resulting regularized NSGP (R-NSGP) regression problem we develop a method based on the alternating direction method of multipliers (ADMM) and we also analyze its convergence properties theoretically. We also evaluate the performance of the proposed methods in simulated and real-world datasets.
A large number of statistical models are doubly-intractable: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gaussian Markov random fields, autologistic models and Exponential random graph models. A number of approximate schemes based on MCMC techniques, Approximate Bayesian computation (ABC) or analytic approximations to the posterior have been suggested, and these are reviewed here. Exact MCMC schemes, which can be applied to a subset of doubly-intractable distributions, have also been developed and are described in this paper. As yet, no general method exists which can be applied to all classes of models with doubly-intractable posteriors. In addition, taking inspiration from the Physics literature, we study an alternative method based on representing the intractable likelihood as an infinite series. Unbiased estimates of the likelihood can then be obtained by finite time stochastic truncation of the series via Russian Roulette sampling, although the estimates are not necessarily positive. Results from the Quantum Chromodynamics literature are exploited to allow the use of possibly negative estimates in a pseudo-marginal MCMC scheme such that expectations with respect to the posterior distribution are preserved. The methodology is reviewed on well-known examples such as the parameters in Ising models, the posterior for Fisher-Bingham distributions on the $d$-Sphere and a large-scale Gaussian Markov Random Field model describing the Ozone Column data. This leads to a critical assessment of the strengths and weaknesses of the methodology with pointers to ongoing research.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributions, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference for models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا