Do you want to publish a course? Click here

Remote Sensing Image Scene Classification with Deep Neural Networks in JPEG 2000 Compressed Domain

103   0   0.0 ( 0 )
 Added by Gencer Sumbul
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To reduce the storage requirements, remote sensing (RS) images are usually stored in compressed format. Existing scene classification approaches using deep neural networks (DNNs) require to fully decompress the images, which is a computationally demanding task in operational applications. To address this issue, in this paper we propose a novel approach to achieve scene classification in JPEG 2000 compressed RS images. The proposed approach consists of two main steps: i) approximation of the finer resolution sub-bands of reversible biorthogonal wavelet filters used in JPEG 2000; and ii) characterization of the high-level semantic content of approximated wavelet sub-bands and scene classification based on the learnt descriptors. This is achieved by taking codestreams associated with the coarsest resolution wavelet sub-band as input to approximate finer resolution sub-bands using a number of transposed convolutional layers. Then, a series of convolutional layers models the high-level semantic content of the approximated wavelet sub-band. Thus, the proposed approach models the multiresolution paradigm given in the JPEG 2000 compression algorithm in an end-to-end trainable unified neural network. In the classification stage, the proposed approach takes only the coarsest resolution wavelet sub-bands as input, thereby reducing the time required to apply decoding. Experimental results performed on two benchmark aerial image archives demonstrate that the proposed approach significantly reduces the computational time with similar classification accuracies when compared to traditional RS scene classification approaches (which requires full image decompression).



rate research

Read More

137 - Yochai Zur , Amir Adler 2019
Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small number of measurements, obtained by linear projections of the signal. In this paper we present an end-to-end deep learning approach for CS, in which a fully-connected network performs both the linear sensing and non-linear reconstruction stages. During the training phase, the sensing matrix and the non-linear reconstruction operator are jointly optimized using Structural similarity index (SSIM) as loss rather than the standard Mean Squared Error (MSE) loss. We compare the proposed approach with state-of-the-art in terms of reconstruction quality under both losses, i.e. SSIM score and MSE score.
Recent works have demonstrated that deep learning (DL) based compressed sensing (CS) implementation can accelerate Magnetic Resonance (MR) Imaging by reconstructing MR images from sub-sampled k-space data. However, network architectures adopted in previous methods are all designed by handcraft. Neural Architecture Search (NAS) algorithms can automatically build neural network architectures which have outperformed human designed ones in several vision tasks. Inspired by this, here we proposed a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts. Particularly, a specific cell structure, which was integrated into the model-driven MR reconstruction pipeline, was automatically searched from a flexible pre-defined operation search space in a differentiable manner. Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods in terms of PSNR and SSIM with 4-6 times fewer computation resources. Extensive experiments were conducted to analyze how hyper-parameters affect reconstruction performance and the searched structures. The generalizability of the searched architecture was also evaluated on different organ MR datasets. Our proposed method can reach a better trade-off between computation cost and reconstruction performance for MR reconstruction problem with good generalizability and offer insights to design neural networks for other medical image applications. The evaluation code will be available at https://github.com/yjump/NAS-for-CSMRI.
Computer vision tasks are often expected to be executed on compressed images. Classical image compression standards like JPEG 2000 are widely used. However, they do not account for the specific end-task at hand. Motivated by works on recurrent neural network (RNN)-based image compression and three-dimensional (3D) reconstruction, we propose unified network architectures to solve both tasks jointly. These joint models provide image compression tailored for the specific task of 3D reconstruction. Images compressed by our proposed models, yield 3D reconstruction performance superior as compared to using JPEG 2000 compression. Our models significantly extend the range of compression rates for which 3D reconstruction is possible. We also show that this can be done highly efficiently at almost no additional cost to obtain compression on top of the computation already required for performing the 3D reconstruction task.
The performance of image classification methodsheavily relies on the high-quality annotations, which are noteasily affordable, particularly for medical data. To alleviate thislimitation, in this study, we propose a weakly supervised imageclassification method based on combination of hand-craftedfeatures. We hypothesize that integration of these hand-craftedfeatures alongside Long short-term memory (LSTM) classifiercan reduce the adverse effects of weak labels in classificationaccuracy. Our proposed algorithm is based on selecting theappropriate domain representations of the data in Wavelet andDiscrete Cosine Transform (DCT) domains. This informationis then fed into LSTM network to account for the sequentialnature of the data. The proposed efficient, low dimensionalfeatures exploit the power of shallow deep learning modelsto achieve higher performance with lower computational cost.In order to show efficacy of the proposed strategy, we haveexperimented classification of brain tumor grades and achievedthe state of the art performance with the resolution of 256 x 256. We also conducted a comprehensive set of experiments toanalyze the effect of each component on the performance.
We explore an ensembled $Sigma$-net for fast parallel MR imaging, including parallel coil networks, which perform implicit coil weighting, and sensitivity networks, involving explicit sensitivity maps. The networks in $Sigma$-net are trained in a supervised way, including content and GAN losses, and with various ways of data consistency, i.e., proximal mappings, gradient descent and variable splitting. A semi-supervised finetuning scheme allows us to adapt to the k-space data at test time, which, however, decreases the quantitative metrics, although generating the visually most textured and sharp images. For this challenge, we focused on robust and high SSIM scores, which we achieved by ensembling all models to a $Sigma$-net.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا