Do you want to publish a course? Click here

Valid Causal Inference with (Some) Invalid Instruments

304   0   0.0 ( 0 )
 Added by Jason Hartford
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable exclusion assumptions that rule out any relationship between the instrument variable and the response that is not mediated by the treatment. In this paper, we show how to perform consistent IV estimation despite violations of the exclusion assumption. In particular, we show that when one has multiple candidate instruments, only a majority of these candidates---or, more generally, the modal candidate-response relationship---needs to be valid to estimate the causal effect. Our approach uses an estimate of the modal prediction from an ensemble of instrumental variable estimators. The technique is simple to apply and is black-box in the sense that it may be used with any instrumental variable estimator as long as the treatment effect is identified for each valid instrument independently. As such, it is compatible with recent machine-learning based estimators that allow for the estimation of conditional average treatment effects (CATE) on complex, high dimensional data. Experimentally, we achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators, including on a challenging simulated Mendelian Randomization problem.



rate research

Read More

248 - Zijian Guo 2021
Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is a major concern for practical applications and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. The existing inference methods rely on correctly separating valid and invalid instruments in a data dependent way. In this paper, we illustrate post-selection problems of these existing methods. We construct uniformly valid confidence intervals for the causal effect, which are robust to the mistakes in separating valid and invalid instruments. Our proposal is to search for the causal effect such that a sufficient amount of candidate instruments can be taken as valid. We further devise a novel sampling method, which, together with searching, lead to a more precise confidence interval. Our proposed searching and sampling confidence intervals are shown to be uniformly valid under the finite-sample majority and plurality rules. We compare our proposed methods with existing inference methods over a large set of simulation studies and apply them to study the effect of the triglyceride level on the glucose level over a mouse data set.
82 - Eric Dunipace 2021
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: causal optimal transport. This new method directly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between a source and target population. Our approach is model-free but can also incorporate moments or any other important functions of covariates that the researcher desires to balance. We find that the causal optimal transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control study examining the effect of misoprostol versus oxytocin for treatment of post-partum hemorrhage.
375 - Sai Li , Zijian Guo 2020
Instrumental variable methods are widely used for inferring the causal effect of an exposure on an outcome when the observed relationship is potentially affected by unmeasured confounders. Existing instrumental variable methods for nonlinear outcome models require stringent identifiability conditions. We develop a robust causal inference framework for nonlinear outcome models, which relaxes the conventional identifiability conditions. We adopt a flexible semi-parametric potential outcome model and propose new identifiability conditions for identifying the model parameters and causal effects. We devise a novel three-step inference procedure for the conditional average treatment effect and establish the asymptotic normality of the proposed point estimator. We construct confidence intervals for the causal effect by the bootstrap method. The proposed method is demonstrated in a large set of simulation studies and is applied to study the causal effects of lipid levels on whether the glucose level is normal or high over a mice dataset.
134 - Qingliang Fan , Yaqian Wu 2020
Instrumental variables (IV) regression is a popular method for the estimation of the endogenous treatment effects. Conventional IV methods require all the instruments are relevant and valid. However, this is impractical especially in high-dimensional models when we consider a large set of candidate IVs. In this paper, we propose an IV estimator robust to the existence of both the invalid and irrelevant instruments (called R2IVE) for the estimation of endogenous treatment effects. This paper extends the scope of Kang et al. (2016) by considering a true high-dimensional IV model and a nonparametric reduced form equation. It is shown that our procedure can select the relevant and valid instruments consistently and the proposed R2IVE is root-n consistent and asymptotically normal. Monte Carlo simulations demonstrate that the R2IVE performs favorably compared to the existing high-dimensional IV estimators (such as, NAIVE (Fan and Zhong, 2018) and sisVIVE (Kang et al., 2016)) when invalid instruments exist. In the empirical study, we revisit the classic question of trade and growth (Frankel and Romer, 1999).
Mendelian randomization (MR) has become a popular approach to study causal effects by using genetic variants as instrumental variables. We propose a new MR method, GENIUS-MAWII, which simultaneously addresses the two salient phenomena that adversely affect MR analyses: many weak instruments and widespread horizontal pleiotropy. Similar to MR GENIUS citep{Tchetgen2019_GENIUS}, we achieve identification of the treatment effect by leveraging heteroscedasticity of the exposure. We then derive the class of influence functions of the treatment effect, based on which, we construct a continuous updating estimator and establish its consistency and asymptotic normality under a many weak invalid instruments asymptotic regime by developing novel semiparametric theory. We also provide a measure of weak identification and graphical diagnostic tool. We demonstrate in simulations that GENIUS-MAWII has clear advantages in the presence of directional or correlated horizontal pleiotropy compared to other methods. We apply our method to study the effect of body mass index on systolic blood pressure using UK Biobank.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا