No Arabic abstract
Medical image analysis typically includes several tasks such as enhancement, segmentation, and classification. Traditionally, these tasks are implemented using separate deep learning models for separate tasks, which is not efficient because it involves unnecessary training repetitions, demands greater computational resources, and requires a relatively large amount of labeled data. In this paper, we propose a multi-task training approach for medical image analysis, where individual tasks are fine-tuned simultaneously through relevant knowledge transfer using a unified modality-specific feature representation (UMS-Rep). We explore different fine-tuning strategies to demonstrate the impact of the strategy on the performance of target medical image tasks. We experiment with different visual tasks (e.g., image denoising, segmentation, and classification) to highlight the advantages offered with our approach for two imaging modalities, chest X-ray and Doppler echocardiography. Our results demonstrate that the proposed approach reduces the overall demand for computational resources and improves target task generalization and performance. Further, our results prove that the performance of target tasks in medical images is highly influenced by the utilized fine-tuning strategy.
Automated segmentation in medical image analysis is a challenging task that requires a large amount of manually labeled data. However, manually annotating medical data is often laborious, and most existing learning-based approaches fail to accurately delineate object boundaries without effective geometric constraints. Contrastive learning, a sub-area of self-supervised learning, has recently been noted as a promising direction in multiple application fields. In this work, we present a novel Contrastive Voxel-wise Representation Learning (CVRL) method with geometric constraints to learn global-local visual representations for volumetric medical image segmentation with limited annotations. Our framework can effectively learn global and local features by capturing 3D spatial context and rich anatomical information. Specifically, we introduce a voxel-to-volume contrastive algorithm to learn global information from 3D images, and propose to perform local voxel-to-voxel contrast to explicitly make use of local cues in the embedding space. Moreover, we integrate an elastic interaction-based active contour model as a geometric regularization term to enable fast and reliable object delineations in an end-to-end learning manner. Results on the Atrial Segmentation Challenge dataset demonstrate superiority of our proposed scheme, especially in a setting with a very limited number of annotated data.
Machine learning techniques used in computer-aided medical image analysis usually suffer from the domain shift problem caused by different distributions between source/reference data and target data. As a promising solution, domain adaptation has attracted considerable attention in recent years. The aim of this paper is to survey the recent advances of domain adaptation methods in medical image analysis. We first present the motivation of introducing domain adaptation techniques to tackle domain heterogeneity issues for medical image analysis. Then we provide a review of recent domain adaptation models in various medical image analysis tasks. We categorize the existing methods into shallow and deep models, and each of them is further divided into supervised, semi-supervised and unsupervised methods. We also provide a brief summary of the benchmark medical image datasets that support current domain adaptation research. This survey will enable researchers to gain a better understanding of the current status, challenges.
Deep neural networks (DNNs) have become popular for medical image analysis tasks like cancer diagnosis and lesion detection. However, a recent study demonstrates that medical deep learning systems can be compromised by carefully-engineered adversarial examples/attacks with small imperceptible perturbations. This raises safety concerns about the deployment of these systems in clinical settings. In this paper, we provide a deeper understanding of adversarial examples in the context of medical images. We find that medical DNN models can be more vulnerable to adversarial attacks compared to models for natural images, according to two different viewpoints. Surprisingly, we also find that medical adversarial attacks can be easily detected, i.e., simple detectors can achieve over 98% detection AUC against state-of-the-art attacks, due to fundamental feature differences compared to normal examples. We believe these findings may be a useful basis to approach the design of more explainable and secure medical deep learning systems.
The success of deep learning methods in medical image segmentation tasks heavily depends on a large amount of labeled data to supervise the training. On the other hand, the annotation of biomedical images requires domain knowledge and can be laborious. Recently, contrastive learning has demonstrated great potential in learning latent representation of images even without any label. Existing works have explored its application to biomedical image segmentation where only a small portion of data is labeled, through a pre-training phase based on self-supervised contrastive learning without using any labels followed by a supervised fine-tuning phase on the labeled portion of data only. In this paper, we establish that by including the limited label in formation in the pre-training phase, it is possible to boost the performance of contrastive learning. We propose a supervised local contrastive loss that leverages limited pixel-wise annotation to force pixels with the same label to gather around in the embedding space. Such loss needs pixel-wise computation which can be expensive for large images, and we further propose two strategies, downsampling and block division, to address the issue. We evaluate our methods on two public biomedical image datasets of different modalities. With different amounts of labeled data, our methods consistently outperform the state-of-the-art contrast-based methods and other semi-supervised learning techniques.
Transfer learning from supervised ImageNet models has been frequently used in medical image analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-developed pre-training techniques for medical image analysis, leaving several important questions unanswered. As the first step in this direction, we conduct a systematic study on the transferability of models pre-trained on iNat2021, the most recent large-scale fine-grained dataset, and 14 top self-supervised ImageNet models on 7 diverse medical tasks in comparison with the supervised ImageNet model. Furthermore, we present a practical approach to bridge the domain gap between natural and medical images by continually (pre-)training supervised ImageNet models on medical images. Our comprehensive evaluation yields new insights: (1) pre-trained models on fine-grained data yield distinctive local representations that are more suitable for medical segmentation tasks, (2) self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models, and (3) continual pre-training can bridge the domain gap between natural and medical images. We hope that this large-scale open evaluation of transfer learning can direct the future research of deep learning for medical imaging. As open science, all codes and pre-trained models are available on our GitHub page https://github.com/JLiangLab/BenchmarkTransferLearning.