No Arabic abstract
We present a detailed report on sterile neutrino oscillation and U-235 antineutrino energy spectrum measurement results from the PROSPECT experiment at the highly enriched High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. In 96 calendar days of data taken at an average baseline distance of 7.9 m from the center of the 85 MW HFIR core, the PROSPECT detector has observed more than 50,000 interactions of antineutrinos produced in beta decays of U-235 fission products. New limits on the oscillation of antineutrinos to light sterile neutrinos have been set by comparing the detected energy spectra of ten reactor-detector baselines between 6.7 and 9.2 meters. Measured differences in energy spectra between baselines show no statistically significant indication of antineutrinos to sterile neutrino oscillation and disfavor the Reactor Antineutrino Anomaly best-fit point at the 2.5$sigma$ confidence level. The reported U-235 antineutrino energy spectrum measurement shows excellent agreement with energy spectrum models generated via conversion of the measured U-235 beta spectrum, with a $chi^2$/DOF of 31/31. PROSPECT is able to disfavor at 2.4$sigma$ confidence level the hypothesis that U-235 antineutrinos are solely responsible for spectrum discrepancies between model and data obtained at commercial reactor cores. A data-model deviation in PROSPECT similar to that observed by commercial core experiments is preferred with respect to no observed deviation, at a 2.2$sigma$ confidence level.
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water equivalent overburden. Data collected during 33 live-days of reactor operation at a nominal power of 85 MW yields a detection of 25461 $pm$ 283 (stat.) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5$sigma$ statistical significance within two hours of on-surface reactor-on data-taking. A reactor-model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the Reactor Antineutrino Anomaly at 2.2$sigma$ confidence level.
This Letter reports the first measurement of the $^{235}$U $overline{ u_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$pm$304 (stat.) $overline{ u_{e}}$-induced inverse beta decays (IBD), the largest sample from HEU fission to date, 99% of which are attributed to $^{235}$U. Despite broad agreement, comparison of the Huber $^{235}$U model to the measured spectrum produces a $chi^2/ndf = 51.4/31$, driven primarily by deviations in two localized energy regions. The measured $^{235}$U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the $overline{ u_{e}}$ energy region of 5-7MeV.
Current models of antineutrino production in nuclear reactors predict detection rates and spectra at odds with the existing body of direct reactor antineutrino measurements. High-resolution antineutrino detectors operated close to compact research reactor cores can produce new precision measurements useful in testing explanations for these observed discrepancies involving underlying nuclear or new physics. Absolute measurement of the 235U-produced antineutrino spectrum can provide additional constraints for evaluating the accuracy of current and future reactor models, while relative measurements of spectral distortion between differing baselines can be used to search for oscillations arising from the existence of eV-scale sterile neutrinos. Such a measurement can be performed in the United States at several highly-enriched uranium fueled research reactors using near-surface segmented liquid scintillator detectors. We describe here the conceptual design and physics potential of the PROSPECT experiment, a U.S.-based, multi-phase experiment with reactor-detector baselines of 7-20 meters capable of addressing these and other physics and detector development goals. Current R&D status and future plans for PROSPECT detector deployment and data-taking at the High Flux Isotope Reactor at Oak Ridge National Laboratory will be discussed.
The theory of mirror matter predicts a hidden sector made up of a copy of the Standard Model particles and interactions but with opposite parity. If mirror matter interacts with ordinary matter, there could be experimentally accessible implications in the form of neutral particle oscillations. Direct searches for neutron oscillations into mirror neutrons in a controlled magnetic field have previously been performed using ultracold neutrons in storage/disappearance measurements, with some inconclusive results consistent with characteristic oscillation time of $tau$$sim$10~s. Here we describe a proposed disappearance and regeneration experiment in which the neutron oscillates to and from a mirror neutron state. An experiment performed using the existing General Purpose-Small Angle Neutron Scattering instrument at the High Flux Isotope Reactor at Oak Ridge National Laboratory could have the sensitivity to exclude up to $tau$$<$15~s in 1 week of beamtime and at low cost.
Reactor antineutrino experiments have the ability to search for neutrino oscillations independent of reactor flux predictions using a relative measurement of the neutrino flux and spectrum across a range of baselines. The range of accessible oscillation parameters are determined by the baselines of the detector arrangement. We examine the sensitivity of short-baseline experiments with more than one detector and discuss the optimization of a second, far detector. The extended reach in baselines of a 2-detector experiment will improve sensitivity to short-baseline neutrino oscillations while also increasing the ability to distinguish between 3+1 mixing and other non-standard models.