Modeling Individual and Team Behavior through Spatio-temporal Analysis


Abstract in English

Modeling players behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Warping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: BoomTown, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.

Download