Do you want to publish a course? Click here

Gradient-free Online Learning in Games with Delayed Rewards

123   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Motivated by applications to online advertising and recommender systems, we consider a game-theoretic model with delayed rewards and asynchronous, payoff-based feedback. In contrast to previous work on delayed multi-armed bandits, we focus on multi-player games with continuous action spaces, and we examine the long-run behavior of strategic agents that follow a no-regret learning policy (but are otherwise oblivious to the game being played, the objectives of their opponents, etc.). To account for the lack of a consistent stream of information (for instance, rewards can arrive out of order, with an a priori unbounded delay, etc.), we introduce a gradient-free learning policy where payoff information is placed in a priority queue as it arrives. In this general context, we derive new bounds for the agents regret; furthermore, under a standard diagonal concavity assumption, we show that the induced sequence of play converges to Nash equilibrium with probability $1$, even if the delay between choosing an action and receiving the corresponding reward is unbounded.



rate research

Read More

Regret minimization has proved to be a versatile tool for tree-form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the players decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs -- even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restrictions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used -- for example, those in which only black-box access to the environment is available. We give the first, to our knowledge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i) -- and thus also (ii) -- is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encounters new decision points. We give an efficient algorithm that achieves $O(T^{3/4})$ regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algorithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment.
This paper focuses on projection-free methods for solving smooth Online Convex Optimization (OCO) problems. Existing projection-free methods either achieve suboptimal regret bounds or have high per-iteration computational costs. To fill this gap, two efficient projection-free online methods called ORGFW and MORGFW are proposed for solving stochastic and adversarial OCO problems, respectively. By employing a recursive gradient estimator, our methods achieve optimal regret bounds (up to a logarithmic factor) while possessing low per-iteration computational costs. Experimental results demonstrate the efficiency of the proposed methods compared to state-of-the-arts.
We study deep reinforcement learning (RL) algorithms with delayed rewards. In many real-world tasks, instant rewards are often not readily accessible or even defined immediately after the agent performs actions. In this work, we first formally define the environment with delayed rewards and discuss the challenges raised due to the non-Markovian nature of such environments. Then, we introduce a general off-policy RL framework with a new Q-function formulation that can handle the delayed rewards with theoretical convergence guarantees. For practical tasks with high dimensional state spaces, we further introduce the HC-decomposition rule of the Q-function in our framework which naturally leads to an approximation scheme that helps boost the training efficiency and stability. We finally conduct extensive experiments to demonstrate the superior performance of our algorithms over the existing work and their variants.
We provide an online convex optimization algorithm with regret that interpolates between the regret of an algorithm using an optimal preconditioning matrix and one using a diagonal preconditioning matrix. Our regret bound is never worse than that obtained by diagonal preconditioning, and in certain setting even surpasses that of algorithms with full-matrix preconditioning. Importantly, our algorithm runs in the same time and space complexity as online gradient descent. Along the way we incorporate new techniques that mildly streamline and improve logarithmic factors in prior regret analyses. We conclude by benchmarking our algorithm on synthetic data and deep learning tasks.
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to nearby games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا