Do you want to publish a course? Click here

Understanding the electromagnetic response of graphene/metallic nanostructures hybrids of different dimensionality

97   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasmonic excitations such as surface-plasmon-polaritons (SPPs) and graphene-plasmons (GPs), carry large momenta and are thus able to confine electromagnetic fields to small dimensions. This property makes them ideal platforms for subwavelength optical control and manipulation at the nanoscale. The momenta of these plasmons are even further increased if a scheme of metal-insulator-metal and graphene-insulator-metal are used for SPPs and GPs, respectively. However, with such large momenta, their far-field excitation becomes challenging. In this work, we consider hybrids of graphene and metallic nanostructures and study the physical mechanisms behind the interaction of far-field light with the supported high momenta plasmon modes. While there are some similarities in the properties of GPs and SPPs, since both are of the plasmon-polariton type, their physical properties are also distinctly different. For GPs we find two different physical mechanism related to either GPs confined to isolated cavities, or large area collective grating couplers. Strikingly, we find that although the two systems are conceptually different, under specific conditions they can behave similarly. By applying the same study to SPPs, we find a different physical behavior, which fundamentally stems from the different dispersion relations of SPPs as compared to GPs. Furthermore, these hybrids produce large field enhancements that can also be electrically tuned and modulated making them the ideal candidates for a variety of plasmonic devices.



rate research

Read More

93 - Eric Jeckelmann 2020
We investigate the low-energy collective charge excitations (plasmons, holons) in metallic atomic wires deposited on semiconducting substrates. These systems are described by two-dimensional correlated models representing strongly anisotropic lattices or weakly coupled chains. Well-established theoretical approaches and results are used to study their properties: random phase approximation for anisotropic Fermi liquids and bosonization for coupled Tomonaga-Luttinger liquids as well as Bethe Ansatz and density-matrix renormalization group methods for ladder models. We show that the Fermi and Tomonaga-Luttinger liquid theories predict the same qualitative behavior for the dispersion of excitations at long wave lengths. Moreover, their scaling depends on the choice of the effective electron-electron interaction but does not characterize the dimensionality of the metallic state. Our results also suggest that such anisotropic correlated systems can exhibit two-dimensional dispersions due to the coupling between wires but remain quasi-one-dimensional strongly anisotropic conductors or retain typical features of Tomonaga-Luttinger liquids such as the power-law behaviour of the density of states at the Fermi energy. Thus it is possible that atomic wire materials such as Au/Ge(100) exhibit a mixture of features associated with one and two dimensional metals.
Spin and angular momenta of light are important degrees of freedom in nanophotonics which control light propagation, optical forces and information encoding. Typically, optical angular momentum is generated using q-plates or spatial light modulators. Here, we show that graphene-supported plasmonic nanostructures with broken rotational symmetry provide a surprising spin to orbital angular momentum conversion, which can be continuously controlled by changing the electrochemical potential of graphene. Upon resonant illumination by a circularly polarized plane wave, a polygonal array of indium-tin-oxide nanoparticles on a graphene sheet generates scattered field carrying electrically-tunable orbital angular momentum. This unique photonic spin-orbit coupling occurs due to the strong coupling of graphene plasmon polaritons and localised surface plasmons of the nanoparticles and leads to the controlled directional excitation of graphene plasmons. The tuneable spin-orbit conversion pave the way to high-rate information encoding in optical communications, electric steering functionalities in optical tweezers, and nanorouting of higher-dimensional entangled photon states.
We studied experimentally the effect of a stripe-like domain structure in a ferromagnetic BaFe_{12}O_{19} substrate on the magnetoresistance of a superconducting Pb microbridge. The system was designed in such a way that the bridge is oriented perpendicular to the domain walls. It is demonstrated that depending on the ratio between the amplitude of the nonuniform magnetic field B_0, induced by the ferromagnet, and the upper critical field H_{c2} of the superconducting material, the regions of the reverse-domain superconductivity in the H-T plane can be isolated or can overlap (H is the external magnetic field, T is temperature). The latter case corresponds to the condition B_0/H_{c2}<1 and results in the formation of superconductivity above the magnetic domains of both polarities. We discovered the regime of edge-assisted reverse-domain superconductivity, corresponding to localized superconductivity near the edges of the bridge above the compensated magnetic domains. Direct verification of the formation of inhomogeneous superconducting states and external-field-controlled switching between normal state and inhomogeneous superconductivity were obtained by low-temperature scanning laser microscopy.
The interaction of light with metallic nanostructures produces a collective excitation of electrons at the metal surface, also known as surface plasmons. These collective excitations lead to resonances that enable the confinement of light in deep-subwavelength regions, thereby leading to large near-field enhancements. The simulation of plasmon resonances presents notable challenges. From the modeling perspective, the realistic behavior of conduction-band electrons in metallic nanostructures is not captured by Maxwells equations, thus requiring additional modeling. From the simulation perspective, the disparity in length scales stemming from the extreme field localization demands efficient and accurate numerical methods. In this paper, we develop the hybridizable discontinuous Galerkin (HDG) method to solve Maxwells equations augmented with the hydrodynamic model for the conduction-band electrons in noble metals. This method enables the efficient simulation of plasmonic nanostructures while accounting for the nonlocal interactions between electrons and the incident light. We introduce a novel postprocessing scheme to recover superconvergent solutions and demonstrate the convergence of the proposed HDG method for the simulation of a 2D gold nanowire and a 3D periodic annular nanogap structure. The results of the hydrodynamic model are compared to those of a simplified local response model, showing that differences between them can be significant at the nanoscale.
Hot-filament process was recently employed to convert, totally or partially, few-layer graphene (FLG) with Bernal stacking into crystalline sp$^3$-C sheets at low pressure. Those materials constitute new synthetic carbon nanoforms. The result reported earlier relies on Raman spectroscopy and Fourier transform infrared microscopy. As soon as the number of graphene layers in the starting FLG is higher than 2-3, the sp$^2$-C to sp$^3$-C conversion tends to be partial only. We hereby report new evidences confirming the sp$^2$-C to sp$^3$-C conversion from electron diffraction at low energy,Raman spectroscopy and Density Functional Theory (DFT) calculations. Partial sp$^2$-C to sp$^3$-C conversion generates couples of twisted, superimposed coherent domains (TCD), supposedly because of stress relaxation, which are evidenced by electron diffraction and Raman spectroscopy. TCDs come with the occurrence of a twisted bilayer graphene feature located at the interface between the upper diamanoid domain and the non-converted graphenic domain underneath, as evidenced by a specific Raman signature consistent with the literature. DFT calculations show that the up-to-now poorly understood Raman T peak originates from a sp$^2$-C-sp$^3$-C mixt layer located between a highly hydrogenated sp$^3$-C surface layer and an underneath graphene layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا