Do you want to publish a course? Click here

Carrier-envelope phase effects in Laser Wakefield Acceleration with near-single-cycle pulses

81   0   0.0 ( 0 )
 Added by Julius Huijts
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realisation of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short pulses. Through particle-in-cell simulations, we show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse. For the case of self-injection, this in turn strongly affects the initial conditions of injected electrons, causing collective betatron oscillations of the electron beam. As a result, the electron beam pointing, electron energy spectrum and the direction of emitted betatron radiation become CEP-dependent. For injection in a density gradient the effect on beam pointing is reduced and the electron energy spectrum is CEP-independent, as electron injection is mostly longitudinal and mainly determined by the density gradient. Our results highlight the importance of controlling the CEP in this regime for producing stable and reproducible relativistic electron beams and identify how CEP effects may be observed in experiments. In the future, CEP control may become an additional tool to control the energy spectrum or pointing of the accelerated electron beam.



rate research

Read More

The impact of the carrier-envelope phase (CEP) of an intense multi-cycle laser pulse on the radiation of an electron beam during nonlinear Compton scattering is investigated. An interaction regime of the electron beam counterpropagating to the laser pulse is employed, when pronounced high-energy x-ray double peaks emerge at different angles near the backward direction relative to the initial electron motion. This is achieved in the relativistic interaction domain, with the additional requirements that the electron energy is much lower than that necessary for the electron reflection condition at the laser peak, and the stochasticity effects in the photon emission are weak. The asymmetry parameter of the double peaks in the angular radiation distribution is shown to serve as a sensitive and uniform measure for the CEP of the laser pulse. The method demonstrates unprecedented sensitivity to subtle CEP-effects up to 10-cycle laser pulses and can be applied for the characterization of extremely strong laser pulses in present and near future laser facilities.
We report on high efficiency energy transfer in a GeV-class laser wakefield accelerator. Both the transfer of energy from the laser to the plasma wakefield, and from the plasma to the accelerated electron beam were diagnosed experimentally by simultaneous measurement of the deceleration of laser photons and the accelerated electrons as a function of acceleration length. The extraction efficiency, which we define as the ratio of the energy gained by the electron beam to the energy lost by the self-guided laser mode, was maximised at $27pm2$ % by tuning of the plasma density, plasma length and incident laser pulse compression. At higher densities, the laser was observed to fully redshift over an entire octave, from 800~nm to 1600~nm.
Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^+$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.
We explore a regime of laser-driven plasma acceleration of electrons where the radial envelope of the laser-pulse incident at the plasma entrance is strongly mismatched to the nonlinear plasma electron response excited by it. This regime has been experimentally studied with the gemini laser using f/40 focusing optics in August 2015 and f/20 in 2008. The physical mechanisms and the scaling laws of electron acceleration achievable in a laser-plasma accelerator have been studied in the radially matched laser regime and thus are not accurate in the strongly mismatched regime explored here. In this work, we show that a novel adjusted-a0 model applicable over a specific range of densities where the laser enters the state of a strong optical shock, describes the mismatched regime. Beside several novel aspects of laser-plasma interaction dynamics relating to an elongating bubble shape and the corresponding self-injection mechanism, importantly we find that in this strongly mismatched regime when the laser pulse transforms into an optical shock it is possible to achieve beam-energies that significantly exceed the incident intensity matched regime scaling laws.
199 - W. Lu , M. Tzoufras , 2006
The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for Laser WakeField Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample Particle-In-Cell (PIC) simulation of a 30f sec, 200T W laser interacting with a 0.75cm long plasma with density 1.5*10^18 cm^-3 to produce an ultra-short (10f s) mono-energetic bunch of self-injected electrons at 1.5 GeV with 0.3nC of charge. For future higher-energy accelerator applications we propose a parameter space, that is distinct from that described by Gordienko and Pukhov [Physics of Plasmas 12, 043109 (2005)] in that it involves lower densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا