We study the escape fraction of ionizing photons (f_esc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass M_halo~10^10 and 10^11 M_sun (stellar mass M*~10^7 and 10^9 M_sun) at z=5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17-39% of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute f_esc from cluster stars and non-cluster stars formed during a starburst over ~100 Myr in each galaxy. We find that the averaged f_esc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low f_esc in the first few Myrs, presumably because they form preferentially in more extreme environments with high optical depths; the f_esc increases later as feedback starts to disrupt the natal cloud. On the other hand, non-cluster stars formed between cluster complexes or in the compressed shell at the front of a superbubble can also have high f_esc. We find that cluster stars on average have comparable f_esc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiency in high-redshift galaxies and hence proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization.