Do you want to publish a course? Click here

Environmental impact on star-forming galaxies in a $z sim 0.9$ cluster during course of galaxy accretion

63   0   0.0 ( 0 )
 Added by Tetsuro Asano
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxies change their properties as they assemble into clusters. In order to understand the physics behind that, we need to go back in time and observe directly what is occurring in galaxies as they fall into a cluster. We have conducted a narrow-band and $J$-band imaging survey on a cluster CL1604-D at $z=0.923$ using a new infrared instrument SWIMS installed at the Subaru Telescope. The narrow-band filter, NB1261, matches to H$alpha$ emission from the cluster at $z=0.923$. Combined with a wide range of existing data from various surveys, we have investigated galaxy properties in and around this cluster in great detail. We have identified 27 H$alpha$ emitters associated with the cluster. They have significant overlap with MIPS 24$mu$m sources and are located exclusively in the star forming regime on the rest-frame $UVJ$ diagram. We have identified two groups of galaxies near the cluster in the 2D spatial distribution and the phase-space diagram, which are likely to be in-falling to the cluster main body. We have compared various physical properties of star forming galaxies, such as specific star formation rates (burstiness) and morphologies (merger) as a function of environment; cluster center, older group, younger group, and the field. As a result, a global picture has emerged on how the galaxy properties are altered as they assemble into a denser region. This includes the occurrence of mergers, enhancement of star formation activity, excursion to the dusty starburst phase, and eventual quenching to a passive phase.



rate research

Read More

260 - A. G. Noble 2013
We present an infrared study of a z=0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MIPS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24um-bright sources within the cluster, and measure their 24um star formation rates (SFRs) down to ~6 Msolar/year. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies amongst the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r_200)x(Delta v/sigma_v); galaxies accreted at earlier times possess lower values of (r/r_200)x(Delta v/sigma_v) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.
We present a pixelized source reconstruction method applied on Integral Field Spectroscopic (IFS) observations of gravitationally lensed galaxies. We demonstrate the effectiveness of this method in a case study on the clumpy morphology of a $z sim 2$ lensed galaxy behind a group-scale lens. We use a Bayesian forward source modelling approach to reconstruct the surface brightness distribution of the source galaxy on a uniformly pixelized grid while accounting for the image point spread function (PSF). The pixelated approach is sensitive to clump sizes down to 100 pc and resolves smaller clump sizes with an improvement in the signal to noise ratio (SNR) by almost a factor of ten compared with more traditional ray-tracing approaches.
We analyse the evolution of environmental quenching efficiency, the fraction of quenched cluster galaxies that would be star-forming if they were in the field, as a function of redshift in 14 spectroscopically confirmed galaxy clusters with 0.87 < z < 1.63 from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS). The clusters are the richest in the survey at each redshift. Passive fractions rise from $42_{-13}^{+10}$% at z ~ 1.6 to $80_{-9}^{+12}$% at z ~ 1.3 and $88_{-3}^{+4}$% at z < 1.1, outpacing the change in passive fraction in the field. Environmental quenching efficiency rises dramatically from $16_{-19}^{+15}$ at z ~ 1.6 to $62_{-15}^{+21}% at z ~ 1.3 and $73_{-7}^{+8}$% at z $lesssim$ 1.1. This work is the first to show direct observational evidence for a rapid increase in the strength of environmental quenching in galaxy clusters at z ~ 1.5, where simulations show cluster-mass halos undergo non-linear collapse and virialisation.
We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ~ 0, using the AKARI Far-Infrared Surveyor (FIS) all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 < z < 0.07 and the stellar mass range of 9.2 < log_10 (M_star/M_solar). We select SF galaxies based on their H_alpha equivalent width (EW_Ha> 4 A) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific SFR (SSFR_SDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 micron) and WIDE-L (140 micron) bands, and then compute IR-based SFR (SFR_IR) from L_IR. We find a mild decrease of IR- based SSFR (SSFR_IR) amongst SF galaxies with increasing local density (~0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (T_dust) using the flux densities at 90 micron and 140 micron bands. We confirm a strong positive correlation between T_dust and SSFR_IR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that T_dust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-T_dust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of T_dust holds down to relatively low-density environments.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allows us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا