Do you want to publish a course? Click here

3D Placement for Multi-UAV Relaying: An Iterative Gibbs-Sampling and Block Coordinate Descent Optimization Approach

157   0   0.0 ( 0 )
 Added by Zhenyu Kang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we consider an unmanned aerial vehicle (UAV) enabled relaying system where multiple UAVs are deployed as aerial relays to support simultaneous communications from a set of source nodes to their destination nodes on the ground. An optimization problem is formulated under practical channel models to maximize the minimum achievable expected rate among all pairs of ground nodes by jointly designing UAVs three-dimensional (3D) placement as well as the bandwidth-and-power allocation. This problem, however, is non-convex and thus difficult to solve. As such, we propose a new method, called iterative Gibbs-sampling and block-coordinate-descent (IGS-BCD), to efficiently obtain a high-quality suboptimal solution by synergizing the advantages of both the deterministic (BCD) and stochastic (GS) optimization methods. Specifically, our proposed method alternates between two optimization phases until convergence is reached, namely, one phase that uses the BCD method to find locally-optimal UAVs 3D placement and the other phase that leverages the GS method to generate new UAVs 3D placement for exploration. Moreover, we present an efficient method for properly initializing UAVs placement that leads to faster convergence of the proposed IGS-BCD algorithm. Numerical results show that the proposed IGS-BCD and initialization methods outperform the conventional BCD or GS method alone in terms of convergence-and-performance trade-off, as well as other benchmark schemes.



rate research

Read More

69 - Peiming Li , Jie Xu 2018
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs are deployed as aerial base stations (BSs) to serve users distributed on the ground. Different from prior works that ignore UAVs backhaul connections, we practically consider that these UAVs are connected to the core network through a ground gateway node via rate-limited multi-hop wireless backhauls. We also consider that the air-to-ground (A2G) access links from UAVs to users and the air-to-air (A2A) backhaul links among UAVs are operated over orthogonal frequency bands. Under this setup, we aim to maximize the common (or minimum) throughput among all the ground users in the downlink of this network subject to the flow conservation constraints at the UAVs, by optimizing the UAVs deployment locations, jointly with the bandwidth and power allocation of both the access and backhaul links. However, the common throughput maximization is a non-convex optimization problem that is difficult to be solved optimally. To tackle this issue, we use the techniques of alternating optimization and successive convex programming (SCP) to obtain a locally optimal solution. Numerical results show that the proposed design significantly improves the common throughput among all ground users as compared to other benchmark schemes.
186 - Hongjian Sun , Bo Tan , Jing Jiang 2013
Wireless technologies can support a broad range of smart grid applications including advanced metering infrastructure (AMI) and demand response (DR). However, there are many formidable challenges when wireless technologies are applied to the smart gird, e.g., the tradeoffs between wireless coverage and capacity, the high reliability requirement for communication, and limited spectral resources. Relaying has emerged as one of the most promising candidate solutions for addressing these issues. In this article, an introduction to various relaying strategies is presented, together with a discussion of how to improve spectral efficiency and coverage in relay-based information and communications technology (ICT) infrastructure for smart grid applications. Special attention is paid to the use of unidirectional relaying, collaborative beamforming, and bidirectional relaying strategies.
149 - Hanbaek Lyu 2020
Block coordinate descent (BCD), also known as nonlinear Gauss-Seidel, is a simple iterative algorithm for nonconvex optimization that sequentially minimizes the objective function in each block coordinate while the other coordinates are held fixed. We propose a version of BCD that is guaranteed to converge to the stationary points of block-wise convex and differentiable objective functions under constraints. Furthermore, we obtain a best-case rate of convergence of order $log n/sqrt{n}$, where $n$ denotes the number of iterations. A key idea is to restrict the parameter search within a diminishing radius to promote stability of iterates, and then to show that such auxiliary constraints vanish in the limit. As an application, we provide a modified alternating least squares algorithm for nonnegative CP tensor factorization that converges to the stationary points of the reconstruction error with the same bound on the best-case rate of convergence. We also experimentally validate our results with both synthetic and real-world data.
We propose a new one-bit feedback scheme with scheduling decision based on the maximum expected weighted rate. We show the concavity of the $2$-user case and provide the optimal solution which achieves the maximum weighted rate of the users. For the general asymmetric M-user case, we provide a heuristic method to achieve the maximum expected weighted rate. We show that the sum rate of our proposed scheme is very close to the sum rate of the full channel state information case, which is the upper bound performance.
The method of block coordinate gradient descent (BCD) has been a powerful method for large-scale optimization. This paper considers the BCD method that successively updates a series of blocks selected according to a Markov chain. This kind of block selection is neither i.i.d. random nor cyclic. On the other hand, it is a natural choice for some applications in distributed optimization and Markov decision process, where i.i.d. random and cyclic selections are either infeasible or very expensive. By applying mixing-time properties of a Markov chain, we prove convergence of Markov chain BCD for minimizing Lipschitz differentiable functions, which can be nonconvex. When the functions are convex and strongly convex, we establish both sublinear and linear convergence rates, respectively. We also present a method of Markov chain inertial BCD. Finally, we discuss potential applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا