No Arabic abstract
The thiophenoxy radical (C6H5S) is a species of possible astrophysical interest due to an electronic transition in a 5000 A region. The B <-- X electronic transition of this radical in the discharge of thiophenol was measured using a cavity ring-down spectrometer. The optical absorption spectrum of this transition was obtained in the range covering from the origin band (0-0) to a frequency of 1750 cm-1. The vibronic bands in the 400-1700 cm-1 region are stronger than the origin band, suggesting structural difference between the ground and excited electronic states. The prominent progression was assigned to the 6a symmetric in-plane CCC bending mode starting from the 6b10 forbidden band. Band origins of individual bands were determined by analysis of the rotational profiles. Although these vibronic bands were not found in optical spectra of diffuse clouds, the upper limits of the column densities for the thiophenoxy radical in the diffuse clouds toward HD 183143 and HD 204827 were evaluated to be 4 x 10^13 cm-2.
Our observations of TMC-1 with the Yebes 40 m radio telescope in the 31.0-50.3 GHz range allowed us to detect a group of unidentified lines, showing a complex line pattern indicative of an open-shell species. {}The observed frequencies of these lines and the similarity of the spectral pattern with that of the 2$_{0,2}$-1$_{0,1}$ rotational transition of H$_2$CCN indicate that the lines arise from the deuterated cyanomethyl radical, HDCCN. Using Fourier transform microwave spectroscopy experiments combined with electric discharges, we succeeded in producing the radical HDCCN in the laboratory and observed its 1$_{0,1}$-0$_{0,0}$ and 2$_{0,2}$-1$_{0,1}$ rotational transitions. From our observations and assuming a rotational temperature of 5 K, we derive an abundance ratio H$_2$CCN/HDCCN=20$pm$4. The high abundance of the deuterated form of H$_2$CCN is well accounted for by a standard gas-phase model, in which deuteration is driven by deuteron transfer from the H$_2$D$^+$ molecular ion.
Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high -- as well as low -- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated methyl mercaptan CH$_3$SD to facilitate astronomical observations by radio telescope arrays at (sub)millimeter wavelengths. We have measured the rotational spectrum associated with the large-amplitude internal rotation of the methyl group of methyl mercaptan using an isotopically enriched sample in the 150-510 GHz frequency range using the Koln millimeter wave spectrometer. The analysis of the spectra has been performed up to the second excited torsional state. We present modeling results of these data with the RAM36 program. CH$_3$SD was searched for, but not detected, in data from the Atacama Large Millimeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS) of the deeply embedded protostar IRAS 16293-2422. The derived upper limit corresponds to a degree of deuteration of at most ~18%.
Thanks to high-resolution and non-dispersive spectrometers onboard future X-ray missions such as XRISM and Athena, we are finally poised to answer important questions about the formation and evolution of galaxies and large-scale structure. However, we currently lack an adequate understanding of many atomic processes behind the spectral features we will soon observe. Large error bars on parameters as critical as transition energies and atomic cross sections can lead to unacceptable uncertainties in the calculations of e.g., elemental abundance, velocity, and temperature. Unless we address these issues, we risk limiting the full scientific potential of these missions. Laboratory astrophysics, which comprises theoretical and experimental studies of the underlying physics behind observable astrophysical processes, is therefore central to the success of these missions.
IRAS 09002-4732 is a poorly studied embedded cluster of stars in the Vela Molecular Ridge at a distance of 1.7kpc. Deep observations with the Chandra X-ray Observatory, combined with existing optical and infrared surveys, produce a catalog of 441 probable pre-main sequence members of the region. The stellar spatial distribution has two components: most stars reside in a rich, compact, elliptical cluster, but a minority reside within a molecular filament several parsecs long that straddles the cluster. The filament has active distributed star formation with dozens of unclustered protostars. The cluster pre-main sequence population is $leq 0.8$ Myr old and deeply embedded; its most massive member is extremely young producing an ultracompact H II region. The cluster total population deduced from the X-ray luminosity function is surprisingly rich, twice that of the Orion Nebula Cluster. The cluster core is remarkably dense where strong N-body interactions should be occurring; its Initial Mass Function may be deficient in massive stars. We infer that IRAS 09002-4732 is a rare case where a rich cluster is forming today in a molecular filament, consistent with astrophysical models of cluster formation in clouds that involve the hierarchical formation and merging of groups in molecular filaments.
Context. Blazars are the most numerous class of High Energy (HE; E about 50 MeV - few 100 GeV) and Very High Energy (VHE; E about 100 GeV - 10 TeV) gamma-ray emitters. As of today, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacs, mainly due to the difficulty of measuring reliable redshifts from their nearly featureless, continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first of a series of papers which aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi-LAT telescope still lacking redshift measurements but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium to high resolution spectroscopy of nineteen blazar optical counterparts using the ESI spectrograph at Keck, the RSS spectrograph at the SALT telescope, and the EFOSC2 spectrograph at the ESO NTT. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482. one tentative redshift, three redshift lower limits including one at z > 0.449 and another at z > 0.868. There were four objects found to have featureless spectra.