No Arabic abstract
Groups of enterprises can serve as guarantees for one another and form complex networks when obtaining loans from commercial banks. During economic slowdowns, corporate default may spread like a virus and lead to large-scale defaults or even systemic financial crises. To help financial regulatory authorities and banks manage the risk associated with networked loans, we identified the default contagion risk, a pivotal issue in developing preventive measures, and established iConVis, an interactive visual analysis tool that facilitates the closed-loop analysis process. A novel financial metric, the contagion effect, was formulated to quantify the infectious consequences of guarantee chains in this type of network. Based on this metric, we designed and implement a series of novel and coordinated views that address the analysis of financial problems. Experts evaluated the system using real-world financial data. The proposed approach grants practitioners the ability to avoid previous ad hoc analysis methodologies and extend coverage of the conventional Capital Accord to the banking industry.
We consider a general tractable model for default contagion and systemic risk in a heterogeneous financial network, subject to an exogenous macroeconomic shock. We show that, under some regularity assumptions, the default cascade model could be transferred to a death process problem represented by balls-and-bins model. We also reduce the dimension of the problem by classifying banks according to different types, in an appropriate type space. These types may be calibrated to real-world data by using machine learning techniques. We then state various limit theorems regarding the final size of default cascade over different types. In particular, under suitable assumptions on the degree and threshold distributions, we show that the final size of default cascade has asymptotically Gaussian fluctuations. We next state limit theorems for different system-wide wealth aggregation functions and show how the systemic risk measure, in a given stress test scenario, could be related to the structure and heterogeneity of financial networks. We finally show how these results could be used by a social planner to optimally target interventions during a financial crisis, with a budget constraint and under partial information of the financial network.
We discuss the systemic risk implied by the interbank exposures reconstructed with the maximum entropy method. The maximum entropy method severely underestimates the risk of interbank contagion by assuming a fully connected network, while in reality the structure of the interbank network is sparsely connected. Here, we formulate an algorithm for sparse network reconstruction, and we show numerically that it provides a more reliable estimation of the systemic risk.
We propose a novel credit default model that takes into account the impact of macroeconomic information and contagion effect on the defaults of obligors. We use a set-valued Markov chain to model the default process, which is the set of all defaulted obligors in the group. We obtain analytic characterizations for the default process, and use them to derive pricing formulas in explicit forms for synthetic collateralized debt obligations (CDOs). Furthermore, we use market data to calibrate the model and conduct numerical studies on the tranche spreads of CDOs. We find evidence to support that systematic default risk coupled with default contagion could have the leading component of the total default risk.
This paper studies the optimal dividend for a multi-line insurance group, in which each subsidiary runs a product line and is exposed to some external credit risk. The default contagion is considered such that one default event may increase the default probabilities of all surviving subsidiaries. The total dividend problem for the insurance group is investigated and we find that the optimal dividend strategy is still of the barrier type. Furthermore, we show that the optimal barrier of each subsidiary is modulated by the default state. That is, how many and which subsidiaries have defaulted will determine the dividend threshold of each surviving subsidiary. These conclusions are based on the analysis of the associated recursive system of Hamilton-Jacobi-Bellman variational inequalities (HJBVIs). The existence of the classical solution is established and the verification theorem is proved. In the case of two subsidiaries, the value function and optimal barriers are given in analytical forms, allowing us to conclude that the optimal barrier of one subsidiary decreases if the other subsidiary defaults.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.