No Arabic abstract
Although model-agnostic meta-learning (MAML) is a very successful algorithm in meta-learning practice, it can have high computational cost because it updates all model parameters over both the inner loop of task-specific adaptation and the outer-loop of meta initialization training. A more efficient algorithm ANIL (which refers to almost no inner loop) was proposed recently by Raghu et al. 2019, which adapts only a small subset of parameters in the inner loop and thus has substantially less computational cost than MAML as demonstrated by extensive experiments. However, the theoretical convergence of ANIL has not been studied yet. In this paper, we characterize the convergence rate and the computational complexity for ANIL under two representative inner-loop loss geometries, i.e., strongly-convexity and nonconvexity. Our results show that such a geometric property can significantly affect the overall convergence performance of ANIL. For example, ANIL achieves a faster convergence rate for a strongly-convex inner-loop loss as the number $N$ of inner-loop gradient descent steps increases, but a slower convergence rate for a nonconvex inner-loop loss as $N$ increases. Moreover, our complexity analysis provides a theoretical quantification on the improved efficiency of ANIL over MAML. The experiments on standard few-shot meta-learning benchmarks validate our theoretical findings.
As a popular meta-learning approach, the model-agnostic meta-learning (MAML) algorithm has been widely used due to its simplicity and effectiveness. However, the convergence of the general multi-step MAML still remains unexplored. In this paper, we develop a new theoretical framework to provide such convergence guarantee for two types of objective functions that are of interest in practice: (a) resampling case (e.g., reinforcement learning), where loss functions take the form in expectation and new data are sampled as the algorithm runs; and (b) finite-sum case (e.g., supervised learning), where loss functions take the finite-sum form with given samples. For both cases, we characterize the convergence rate and the computational complexity to attain an $epsilon$-accurate solution for multi-step MAML in the general nonconvex setting. In particular, our results suggest that an inner-stage stepsize needs to be chosen inversely proportional to the number $N$ of inner-stage steps in order for $N$-step MAML to have guaranteed convergence. From the technical perspective, we develop novel techniques to deal with the nested structure of the meta gradient for multi-step MAML, which can be of independent interest.
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, semantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.
Despite recent success of deep network-based Reinforcement Learning (RL), it remains elusive to achieve human-level efficiency in learning novel tasks. While previous efforts attempt to address this challenge using meta-learning strategies, they typically suffer from sampling inefficiency with on-policy RL algorithms or meta-overfitting with off-policy learning. In this work, we propose a novel meta-RL strategy to address those limitations. In particular, we decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment, instantiated with two deep network agents and a task encoder. During meta-training, our method learns a task-conditioned actor network for task-fulfillment, an explorer network with a self-supervised reward shaping that encourages task-informative experiences in task-exploration, and a context-aware graph-based task encoder for task inference. We validate our approach with extensive experiments on several public benchmarks and the results show that our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem.
In this paper, we propose a novel meta-learning method in a reinforcement learning setting, based on evolution strategies (ES), exploration in parameter space and deterministic policy gradients. ES methods are easy to parallelize, which is desirable for modern training architectures; however, such methods typically require a huge number of samples for effective training. We use deterministic policy gradients during adaptation and other techniques to compensate for the sample-efficiency problem while maintaining the inherent scalability of ES methods. We demonstrate that our method achieves good results compared to gradient-based meta-learning in high-dimensional control tasks in the MuJoCo simulator. In addition, because of gradient-free methods in the meta-training phase, which do not need information about gradients and policies in adaptation training, we predict and confirm our algorithm performs better in tasks that need multi-step adaptation.
Model-agnostic meta-learners aim to acquire meta-learned parameters from similar tasks to adapt to novel tasks from the same distribution with few gradient updates. With the flexibility in the choice of models, those frameworks demonstrate appealing performance on a variety of domains such as few-shot image classification and reinforcement learning. However, one important limitation of such frameworks is that they seek a common initialization shared across the entire task distribution, substantially limiting the diversity of the task distributions that they are able to learn from. In this paper, we augment MAML with the capability to identify the mode of tasks sampled from a multimodal task distribution and adapt quickly through gradient updates. Specifically, we propose a multimodal MAML (MMAML) framework, which is able to modulate its meta-learned prior parameters according to the identified mode, allowing more efficient fast adaptation. We evaluate the proposed model on a diverse set of few-shot learning tasks, including regression, image classification, and reinforcement learning. The results not only demonstrate the effectiveness of our model in modulating the meta-learned prior in response to the characteristics of tasks but also show that training on a multimodal distribution can produce an improvement over unimodal training.