Do you want to publish a course? Click here

Crystallographic orientation errors in mechanical exfoliation

141   0   0.0 ( 0 )
 Added by Hadar Steinberg
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluate the effect of mechanical exfoliation of van der Waals materials on crystallographic orientations of the resulting flakes. Flakes originating from a single crystal of graphite, whose orientation is confirmed using STM, are studied using facet orientations and electron back-scatter diffraction (EBSD). While facets exhibit a wide distribution of angles after a single round of exfoliation ($ sigma approx 5^o $), EBSD shows that the true crystallographic orientations are more narrowly distributed ($ sigma approx 1.5^o $), and facets have an approximately error from the true orientation. Furthermore, we find that the majority of graphite fractures are along armchair lines, and that the cleavage process results in an increase of the zigzag lines portion. Our results place values on the rotation caused by a single round of the exfoliation process, and suggest that when a 1-2 degree precision is necessary, the orientation of a flake can be gauged by the orientation of the macroscopic single crystal from which it was exfoliated.



rate research

Read More

Two-dimensional (2D) materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality 2D materials but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental 2D crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended 2D crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a common rule that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of 2D materials.
Resistance switching effects in metal/perovskite contacts based on epitaxial c-axis oriented Y-Ba-Cu-O (YBCO) thin films with different crystallographic orientations have been studied. Three types of Ag/YBCO junctions with the contact restricted to (i) c-axis direction, (ii) ab-plane direction, and (iii) both were designed and fabricated, and their current-voltage characteristics have been measured. The type (i) junctions exhibited conventional bipolar resistance switching behavior, whereas in other two types the low-resistance state was unsteady and their resistance quickly relaxed to the initial high-resistance state. Physical mechanism based on the oxygen diffusion scenario, explaining such behavior, is discussed.
Few layer black phosphorus is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of stability severely limits our ability to synthesise and process this material. Here we demonstrate that high-quality, few-layer black phosphorus nanosheets can be produced in large quantities by liquid phase exfoliation in the solvent N-cyclohexyl-2-pyrrolidone (CHP). We can control nanosheet dimensions and have developed metrics to estimate both nanosheet size and thickness spectroscopically. When exfoliated in CHP, the nanosheets are remarkably stable unless water is intentionally introduced. Computational studies show the degradation to occur by reaction with water molecules only at the nanosheet edge, leading to the removal of phosphorus atoms and the formation of phosphine and phosphorous acid. We demonstrate that liquid exfoliated black phosphorus nanosheets are potentially useful in a range of applications from optical switches to gas sensors to fillers for composite reinforcement.
Noble metal nanostructures are ubiquitous elements in nano-optics, supporting plasmon modes that can focus light down to length scales commensurate with nonlocal effects associated with quantum confinement and spatial dispersion in the underlying electron gas. Nonlocal effects are naturally more prominent for crystalline noble metals, which potentially offer lower intrinsic loss than their amorphous counterparts, and with particular crystal facets giving rise to distinct electronic surface states. Here, we employ a quantum-mechanical model to describe nonclassical effects impacting the optical response of crystalline noble-metal films and demonstrate that these can be well-captured using a set of surface-response functions known as Feibelman $d$-parameters. In particular, we characterize the $d$-parameters associated with the (111) and (100) crystal facets of gold, silver, and copper, emphasizing the importance of surface effects arising due to electron wave function spill-out and the surface-projected band gap emerging from atomic-layer corrugation. We then show that the extracted $d$-parameters can be straightforwardly applied to describe the optical response of various nanoscale metal morphologies of interest, including metallic ultra-thin films, graphene-metal heterostructures hosting extremely confined acoustic graphene plasmons, and crystallographic faceted metallic nanoparticles supporting localized surface plasmons. The tabulated $d$-parameters reported here can circumvent computationally expensive first-principles atomistic simulations to describe microscopic nonlocal effects in the optical response of mesoscopic crystalline metal surfaces, which are becoming widely available with increasing control over morphology down to atomic length scales for state-of-the-art experiments in nano-optics.
95 - P. X. Xu , K. Xia , M. Zwierzycki 2006
As devices are reduced in size, interfaces start to dominate electrical transport making it essential to be able to describe reliably how they transmit and reflect electrons. For a number of nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy is predicted for interfaces between the prototype free-electron materials silver and aluminium for which a massive factor of two difference between (111) and (001) interfaces is found.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا