No Arabic abstract
ALMA observations have revealed that [CII] 158$mu$m line emission in high-z galaxies is ~2-3$times$ more extended than the UV continuum emission. Here we explore whether surface brightness dimming (SBD) of the [CII] line is responsible for the reported [CII] deficit, and the large $L_{rm [OIII]}/L_{rm [CII]}$ luminosity ratio measured in early galaxies. We first analyse archival ALMA images of nine z>6 galaxies observed in both [CII] and [OIII]. After performing several uv-tapering experiments to optimize the identification of extended line emission, we detect [CII] emission in the whole sample, with an extent systematically larger than the [CII] emission. Next, we use interferometric simulations to study the effect of SBD on the line luminosity estimate. About 40% of the extended [CII] component might be missed at an angular resolution of 0.8$^{primeprime}$, implying that $L_{rm [CII]}$ is underestimated by a factor $approx2$ in data at low (<7) signal-to-noise ratio . By combining these results, we conclude that $L_{rm [CII]}$ of z>6 galaxies lies, on average, slightly below the local $L_{rm [CII]}-SFR$ relation ($Delta^{z=6-9}=-0.07pm0.3$), but within the intrinsic dispersion of the relation. SBD correction also yields $L_{rm [OIII]}/L_{rm [CII]}<10$, i.e. more in line with current hydrodynamical simulations.
We study the kinematical properties of galaxies in the Epoch of Reionization via the [CII] 158$mu$m line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disk and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disk inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use Althaea, a highly-resolved ($30, rm pc$) simulated prototypical Lyman Break Galaxy, in the redshift range $z = 6-7$, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk, and III) Disturbed Disk. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in I), II), and III), respectively. We derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor $2$ ($4$). A Tully-Fisher relation is found for the observed high-$z$ galaxies, i.e. $L_{rm[CII]}propto (FWHM)^{1.80pm 0.35}$ for which we provide a simple, physically-based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [CII]. When seen face-on, Althaea is always detected at $> 5sigma$; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of the satellites Chandra and XMM-Newton. Major advances have been obtained in our knowledge of the three separate contributors to the X-ray emission, that are the stellar sources, the hot gas and the galactic nucleus. Here a brief outline of the main results is presented, pointing out the questions that remain open, and finally discussing the prospects to solve them with a wide area X-ray survey mission such as WFXT.
A tight relation between the [CII]158$mu$m line luminosity and star formation rate is measured in local galaxies. At high redshift ($z>5$), though, a much larger scatter is observed, with a considerable (15-20%) fraction of the outliers being [CII]-deficient. Moreover, the [CII] surface brightness ($Sigma_{rm CII}$) of these sources is systematically lower than expected from the local relation. To clarify the origin of such [CII]-deficiency we have developed an analytical model that fits local [CII] data, and has been validated against radiative transfer simulations performed with CLOUDY. The model predicts an overall increase of $Sigma_{rm CII}$ with the surface star formation rate ($Sigma_*$). However, for $Sigma_* > 1 M_odot~{rm yr}^{-1}~{rm kpc}^{-2}$, $Sigma_{rm CII}$ saturates. We conclude that underluminous [CII] systems can result from a combination of three factors: (a) large upward deviations from the Kennicutt-Schmidt relation ($kappa_s gg 1$), parameterized by the burstiness parameter $kappa_s$; (b) low metallicity; (c) low gas density, at least for the most extreme sources (e.g. CR7). Observations of [CII] emission alone cannot break the degeneracy among the above three parameters; this requires additional information coming from other emission lines (e.g. [OIII]88$mu$m, CIII]1909A, CO lines). Simple formulae are given to interpret available data for low and high-$z$ galaxies.
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxies, with physical extents of 3.2-5.4 kpc. The dust continuum is on-average 40% more compact, which results in larger [CII] deficits in the center of the galaxies. However, the measured [CII] deficits are fully consistent with those found at lower redshifts. Four of the galaxies show [CII] velocity fields that are consistent with ordered rotation, while the remaining six galaxies show no clear velocity gradient. All galaxies have high (~80-200 km/s) velocity dispersions, consistent with the interpretation that the interstellar medium (ISM) of these high redshift galaxies is turbulent. By fitting the galaxies with kinematic models, we estimate the dynamical mass of these systems, which range between (0.3 -> 5.4) x 1E10 Msun. For the three closest separation galaxy pairs, we observe dust and [CII] emission from gas in between and surrounding the galaxies, which is an indication that tidal interactions are disturbing the gas in these systems. Although gas exchange in these tidal interactions could power luminous quasars, the existence of quasars in host galaxies without nearby companions suggests that tidal interactions are not the only viable method for fueling their active centers. These observations corroborate the assertion that accreting supermassive black holes do not substantially contribute to the [CII] and dust continuum emission of the quasar host galaxies, and showcase the diverse ISM properties of galaxies when the universe was less than one billion years old.
The scatter in the relationship between the strength of [CII] 158$mu$m emission and the star formation rate at high-redshift has been the source of much recent interest. Although the relationship is well-established locally, several intensely star-forming galaxies have been found whose [CII] 158$mu$m emission is either weak, absent or spatially offset from the young stars. Here we present new ALMA data for the two most distant, gravitationally-lensed and spectroscopically-confirmed galaxies, A2744_YD4 at $z=$8.38 and MACS1149_JD1 at $z=$9.11, both of which reveal intense [OIII] 88$mu$m emission. In both cases we provide stringent upper limits on the presence of [CII] 158$mu$m with respect to [OIII] 88$mu$m. We review possible explanations for this apparent redshift-dependent [CII] deficit in the context of our recent hydrodynamical simulations. Our results highlight the importance of using several emission line diagnostics with ALMA to investigate the nature of the interstellar medium in early galaxies.