Do you want to publish a course? Click here

The Topological Symmetric Orbifold

128   0   0.0 ( 0 )
 Added by Jan Troost
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We analyse topological orbifold conformal field theories on the symmetric product of a complex surface M. By exploiting the mathematics literature we show that a canonical quotient of the operator ring has structure constants given by Hurwitz numbers. This proves a conjecture in the physics literature on extremal correlators. Moreover, it allows to leverage results on the combinatorics of the symmetric group to compute more structure constants explicitly. We recall that the full orbifold chiral ring is given by a symmetric orbifold Frobenius algebra. This construction enables the computation of topological genus zero and genus one correlators, and to prove the vanishing of higher genus contributions. The efficient description of all topological correlators sets the stage for a proof of a topological AdS/CFT correspondence. Indeed, we propose a concrete mathematical incarnation of the proof, relating Gromow-Witten theory in the bulk to the quantum cohomology of the Hilbert scheme on the boundary.



rate research

Read More

We study a class of Little String Theories (LSTs) of A type, described by $N$ parallel M5-branes spread out on a circle and which in the low energy regime engineer supersymmetric gauge theories with $U(N)$ gauge group. The BPS states in this setting correspond to M2-branes stretched between the M5-branes. Generalising an observation made in arXiv:1706.04425, we provide evidence that the BPS counting functions of special subsectors of the latter exhibit a Hecke structure in the Nekrasov-Shatashvili (NS) limit, i.e. the different orders in an instanton expansion of the supersymmetric gauge theory are related through the action of Hecke operators. We extract $N$ distinct such reduced BPS counting functions from the full free energy of the LST with the help of contour integrals with respect to the gauge parameters of the $U(N)$ gauge group. Physically, the states captured by these functions correspond to configurations where the same number of M2-branes is stretched between some of these neighbouring M5-branes, while the remaining M5-branes are collapsed on top of each other and a particular singular contribution is extracted. The Hecke structures suggest that these BPS states form the spectra of symmetric orbifold CFTs. We furthermore show that to leading instanton order (in the NS-limit) the reduced BPS counting functions factorise into simpler building blocks. These building blocks are the expansion coefficients of the free energy for $N=1$ and the expansion of a particular function, which governs the counting of BPS states of a single M5-brane with single M2-branes ending on it on either side. To higher orders in the instanton expansion, we observe new elements appearing in this decomposition, whose coefficients are related through a holomorphic anomaly equation.
We explore large-$N$ symmetric orbifolds of the $mathcal N=2$ minimal models, and find evidence that their moduli spaces each contain a supergravity point. We identify single-trace exactly marginal operators that deform them away from the symmetric orbifold locus. We also show that their elliptic genera exhibit slow growth consistent with supergravity spectra in AdS$_3$. We thus propose an infinite family of new holographic CFTs.
We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the Orbifold groupoids which control the composition of orbifold operations. Three-dimensional TQFTs of Dijkgraaf-Witten type will play an important role in the analysis. We briefly discuss the extension to generalized symmetries and applications to constrain RG flows.
We study (4+2n)-dimensional N=1 super Yang-Mills theory on the orbifold background with non-vanishing magnetic flux. In particular, we study zero-modes of spinor fields. The flavor structure of our models is different from one in magnetized torus models, and would be interesting in realistic model building.
A classic theorem of Kazhdan and Margulis states that for any semisimple Lie group without compact factors, there is a positive lower bound on the covolume of lattices. H. C. Wangs subsequent quantitative analysis showed that the fundamental domain of any lattice contains a ball whose radius depends only on the group itself. A direct consequence is a positive minimum volume for orbifolds modeled on the corresponding symmetric space. However, sharp bounds are known only for hyperbolic orbifolds of dimensions two and three, and recently for quaternionic hyperbolic orbifolds of all dimensions. As in arXiv:0911.4712 and arXiv:1205.2011, this article combines H. C. Wangs radius estimate with an improved upper sectional curvature bound for a canonical left-invariant metric on a real semisimple Lie group and uses Gunthers volume comparison theorem to deduce an explicit uniform lower volume bound for arbitrary orbifold quotients of a given irreducible symmetric spaces of non-compact type. The numerical bound for the octonionic hyperbolic plane is the first such bound to be given. For (real) hyperbolic orbifolds of dimension greater than three, the bounds are an improvement over what was previously known.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا