No Arabic abstract
Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples. However, under certain circumstances, the training of GANs can lead to mode collapse or mode dropping, i.e. the generative models not being able to sample from the entire probability distribution. To address this problem, we use the last layer of the discriminator as a feature map to study the distribution of the real and the fake data. During training, we propose to match the real batch diversity to the fake batch diversity by using the Bures distance between covariance matrices in feature space. The computation of the Bures distance can be conveniently done in either feature space or kernel space in terms of the covariance and kernel matrix respectively. We observe that diversity matching reduces mode collapse substantially and has a positive effect on the sample quality. On the practical side, a very simple training procedure, that does not require additional hyperparameter tuning, is proposed and assessed on several datasets.
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and therefore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not.
The standard practice in Generative Adversarial Networks (GANs) discards the discriminator during sampling. However, this sampling method loses valuable information learned by the discriminator regarding the data distribution. In this work, we propose a collaborative sampling scheme between the generator and the discriminator for improved data generation. Guided by the discriminator, our approach refines the generated samples through gradient-based updates at a particular layer of the generator, shifting the generator distribution closer to the real data distribution. Additionally, we present a practical discriminator shaping method that can smoothen the loss landscape provided by the discriminator for effective sample refinement. Through extensive experiments on synthetic and image datasets, we demonstrate that our proposed method can improve generated samples both quantitatively and qualitatively, offering a new degree of freedom in GAN sampling.
Fairness-aware learning is increasingly important in data mining. Discrimination prevention aims to prevent discrimination in the training data before it is used to conduct predictive analysis. In this paper, we focus on fair data generation that ensures the generated data is discrimination free. Inspired by generative adversarial networks (GAN), we present fairness-aware generative adversarial networks, called FairGAN, which are able to learn a generator producing fair data and also preserving good data utility. Compared with the naive fair data generation models, FairGAN further ensures the classifiers which are trained on generated data can achieve fair classification on real data. Experiments on a real dataset show the effectiveness of FairGAN.
As a vital problem in classification-oriented transfer, unsupervised domain adaptation (UDA) has attracted widespread attention in recent years. Previous UDA methods assume the marginal distributions of different domains are shifted while ignoring the discriminant information in the label distributions. This leads to classification performance degeneration in real applications. In this work, we focus on the conditional distribution shift problem which is of great concern to current conditional invariant models. We aim to seek a kernel covariance embedding for conditional distribution which remains yet unexplored. Theoretically, we propose the Conditional Kernel Bures (CKB) metric for characterizing conditional distribution discrepancy, and derive an empirical estimation for the CKB metric without introducing the implicit kernel feature map. It provides an interpretable approach to understand the knowledge transfer mechanism. The established consistency theory of the empirical estimation provides a theoretical guarantee for convergence. A conditional distribution matching network is proposed to learn the conditional invariant and discriminative features for UDA. Extensive experiments and analysis show the superiority of our proposed model.
Nowadays, target recognition technique plays an important role in many fields. However, the current target image information based methods suffer from the influence of image quality and the time cost of image reconstruction. In this paper, we propose a novel imaging-free target recognition method combining ghost imaging (GI) and generative adversarial networks (GAN). Based on the mechanism of GI, a set of random speckles sequence is employed to illuminate target, and a bucket detector without resolution is utilized to receive echo signal. The bucket signal sequence formed after continuous detections is constructed into a bucket signal array, which is regarded as the sample of GAN. Then, conditional GAN is used to map bucket signal array and target category. In practical application, the speckles sequence in training step is employed to illuminate target, and the bucket signal array is input GAN for recognition. The proposed method can improve the problems caused by conventional recognition methods that based on target image information, and provide a certain turbulence-free ability. Extensive experiments show that the proposed method achieves promising performance.