Do you want to publish a course? Click here

First detection of ozone in the mid-infrared at Mars: implications for methane detection

70   0   0.0 ( 0 )
 Added by Kevin Olsen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ExoMars Trace Gas Orbiter (TGO) was sent to Mars in March 2016 to search for trace gases diagnostic of active geological or biogenic processes. We report the first observation of the spectral features of Martian ozone (O3) in the mid-infrared range using the Atmospheric Chemistry Suite (ACS) Mid-InfaRed (MIR) channel, a cross-dispersion spectrometer operating in solar occultation mode with the finest spectral resolution of any remote sensing mission to Mars. Observations of ozone were made at high northern latitudes (>65N) prior to the onset of the 2018 global dust storm (Ls = 163-193). During this fast transition phase between summer and winter ozone distribution, the O3 volume mixing ratio observed is 100-200 ppbv near 20 km. These amounts are consistent with past observations made at the edge of the southern polar vortex in the ultraviolet range. The observed spectral signature of ozone at 3000-3060 cm-1 directly overlaps with the spectral range of the methane (CH4) nu3 vibration-rotation band, and it, along with a newly discovered CO2 band in the same region, may interfere with measurements of methane abundance.

rate research

Read More

One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale. We seek to quantify the exoplanet detection performance of a space-based mid-infrared nulling interferometer that measures the thermal emission of exoplanets. For this, we have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect over a certain time period. Two different scenarios to distribute the observing time among the stellar targets are discussed and different apertures sizes and wavelength ranges are considered. Within a 2.5-year initial search phase, an interferometer consisting of four 2 m apertures covering a wavelength range between 4 and 18.5 $mu$m could detect up to ~550 exoplanets with radii between 0.5 and 6 R$_oplus$ with an integrated SNR$ge$7. At least ~160 of the detected exoplanets have radii $le$1.5 R$_oplus$. Depending on the observing scenario, ~25-45 rocky exoplanets (objects with radii between 0.5 and 1.5 $_{oplus}$) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four times 3.5 m aperture size, the total number of detections can increase to up to ~770, including ~60-80 rocky, eHZ planets. With four times 1 m aperture size, the maximum detection yield is ~315 exoplanets, including $le$20 rocky, eHZ planets. In terms of predicted detection yield, such a mission can compete with large single-aperture reflected light missions. (abridged)
Most exoplanets detected by direct imaging so far have been characterized by relatively hot (> ~1000 K) and cloudy atmospheres. A surprising feature in some of their atmospheres has been a distinct lack of methane, possibly implying non-equilibrium chemistry. Recently, we reported the discovery of a planetary companion to the Sun-like star GJ 504 using Subaru/HiCIAO within the SEEDS survey. The planet is substantially colder (<600 K) than previously imaged planets, and has indications of fewer clouds, which implies that it represents a new class of planetary atmospheres with expected similarities to late T-type brown dwarfs in the same temperature range. If so, one might also expect the presence of significant methane absorption, which is characteristic of such objects. Here, we report the detection of deep methane absorption in the atmosphere of GJ 504 b, using the Spectral Differential Imaging mode of HiCIAO to distinguish the absorption feature around 1.6 um. We also report updated JHK photometry based on new Ks-band data and a re-analysis of the existing data. The results support the notion that GJ 504 b has atmospheric properties distinct from other imaged exoplanets, and will become a useful reference object for future planets in the same temperature range.
Recently published ALMA observations suggest the presence of 20 ppb PH$_3$ in the upper clouds of Venus. This is an unexpected result, as PH$_3$ does not have a readily apparent source and should be rapidly photochemically destroyed according to our current understanding of Venus atmospheric chemistry. While the reported PH$_3$ spectral line at 266.94 GHz is nearly co-located with an SO$_2$ spectral line, the non-detection of stronger SO$_2$ lines in the wideband ALMA data is used to rule out SO$_2$ as the origin of the feature. We present a reassessment of wideband and narrowband datasets derived from these ALMA observations. The ALMA observations are re-reduced following both the initial and revised calibration procedures discussed by the authors of the original study. We also investigate the phenomenon of apparent spectral line dilution over varying spatial scales resulting from the ALMA antenna configuration. A 266.94 GHz spectral feature is apparent in the narrowband data using the initial calibration procedures, but this same feature can not be identified following calibration revisions. The feature is also not reproduced in the wideband data. While the SO$_2$ spectral line is not observed at 257.54 GHz in the ALMA wideband data, our dilution simulations suggest that SO$_2$ abundances greater than the previously suggested 10 ppb limit would also not be detected by ALMA. Additional millimeter, sub-millimeter, and infrared observations of Venus should be undertaken to further investigate the possibility of PH$_3$ in the Venus atmosphere.
We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the VLT/CRIRES and Keck/NIRSPEC spectrographs, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques we achieve a dynamic range with respect to the disk continuum of ~500 at 3 microns, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 degrees, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature LTE slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).
We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H_2O_2), and molecular oxygen (O_2) in the Martian atmosphere performed on 13 and 16 April 2010 (L_s ~ 77{deg}). We derived a constant volume mixing ratio of 1400 +/- 120 ppm for O_2 and determined upper limits of 200 ppt for HCl and 2 ppb for H_2O_2. Radiative transfer model calculations indicate that the vertical profile of O_2 may not be constant. Photochemical models determine the lowest values of H_2O_2 to be around L_s ~ 75{deg} but overestimate the volume mixing ratio compared to our measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا