Do you want to publish a course? Click here

Multi-Particle Simulation Techniques

62   0   0.0 ( 0 )
 Added by Ji Qiang
 Publication date 2020
  fields Physics
and research's language is English
 Authors Ji Qiang




Ask ChatGPT about the research

The nonlinear space-charge effects play an important role in high intensity/high brightness accelerators. These effects can be self-consistently studied using multi-particle simulations. In this lecture, we will discuss the particle-in-cell method and the symplectic tracking model for self-consistent multi-particle simulations.



rate research

Read More

90 - Ji Qiang 2020
Monte Carlo simulations are widely used in many areas including particle accelerators. In this lecture, after a short introduction and reviewing of some statistical backgrounds, we will discuss methods such as direct inversion, rejection method, and Markov chain Monte Carlo to sample a probability distribution function, and methods for variance reduction to evaluate numerical integrals using the Monte Carlo simulation. We will also briefly introduce the quasi-Monte Carlo sampling at the end of this lecture.
127 - X. Buffat 2020
This lecture aims at providing a users perspective on the main concepts used nowadays for the implementation of numerical algorithm on common computing architecture. In particular, the concepts and applications of Central Processing Units (CPUs), vectorisation, multithreading, hyperthreading and Graphical Processing Units (GPUs), as well as computer clusters and grid computing will be discussed. Few examples of source codes illustrating the usage of these technologies are provided.
68 - R. Ringle , G. Bollen , K. Lund 2020
Linear gas stoppers are widely used to convert high-energy, rare-isotope beams and reaction products into low-energy beams with small transverse emittance and energy spread. Stopping of the high-energy ions is achieved through interaction with a buffer gas, typically helium, generating large quantities of He$^+$/e$^-$ pairs. The Advanced Cryogenic Gas Stopper (ACGS) was designed for fast, efficient stopping and extraction of high-intensity, rare-isotope beams. As part of the design process, a comprehensive particle-in-cell code was developed to optimize the transport and extraction of rare isotopes from the ACGS in the presence of space charge, including He$^+$/e$^-$ dynamics, buffer gas interactions including gas flow, RF carpets, and ion extraction through a nozzle or orifice. Details of the simulations are presented together with comparison to experiment when available.
Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle in- cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10-100) MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.
This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا