We present a physically motivated variational wave function for the ground state of the asymmetric quantum Rabi model (AQRM). The wave function is a weighted superposition of squeezed coherent states entangled with non-orthogonal qubit states, and relies only on three variational parameters in the regimes of interest where the squeezing effect becomes negligible. The variational expansion describes the ground state remarkably well in almost all parameter regimes, especially with arbitrary bias. We use the variational result to calculate various relevant physical observables of the ground state, and make a comparison with existing approximations and the exact solution. The results show that the variational expansion is a significant improvement over the existing approximations for the AQRM.