Do you want to publish a course? Click here

Anomalies, Black strings and the charged Cardy formula

189   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We derive the general anomaly polynomial for a class of two-dimensional CFTs arising as twisted compactifications of a higher-dimensional theory on compact manifolds $mathcal{M}_d$, including the contribution of the isometries of $mathcal{M}_d$. We then use the result to perform a counting of microstates for electrically charged and rotating supersymmetric black strings in AdS$_5times S^5$ and AdS$_7times S^4$ with horizon topology BTZ$ ltimes S^2$ and BTZ$ ltimes S^2 times Sigma_mathfrak{g}$, respectively, where $Sigma_mathfrak{g}$ is a Riemann surface. We explicitly construct the latter class of solutions by uplifting a class of four-dimensional rotating black holes. We provide a microscopic explanation of the entropy of such black holes by using a charged version of the Cardy formula.



rate research

Read More

79 - Masazumi Honda 2019
We study supersymmetric index of 4d $SU(N)$ $mathcal{N}=4$ super Yang-Mills theory on $S^1 times M_3$. We compute asymptotic behavior of the index in the limit of shrinking $S^1$ for arbitrary $N$ by a refinement of supersymmetric Cardy formula. The asymptotic behavior for the superconformal index case ($M_3 =S^3$) at large $N$ agrees with the Bekenstein-Hawking entropy of rotating electrically charged BPS black hole in $AdS_5$ via a Legendre transformation as recently shown in literature. We also find that the agreement formally persists for finite $N$ if we slightly modify the AdS/CFT dictionary between Newton constant and $N$. This implies an existence of non-renormalization property of the quantum black hole entropy. We also study the cases with other gauge groups and additional matters, and the orbifold $mathcal{N}=4$ super Yang-Mills theory. It turns out that the entropies of all the CFT examples in this paper are given by $2pi sqrt{Q_1 Q_2 +Q_1 Q_3 +Q_2 Q_3 -2c(J_1 +J_2 )} $ with charges $Q_{1,2,3}$, angular momenta $J_{1,2}$ and central charge $c$. The results for other $M_3$ make predictions to the gravity side.
Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one $(sqrt{-g} eq 1)$. Our results indicate that the gauge and energy momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant.
It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically extended to higher dimension, as with the black hole solutions in vacuum. In this paper we show that this result is circumvented in Lovelock gravity. We prove that the theory containing only the quadratic Lovelock term, the Gauss-Bonnet term, minimally coupled to a $U(1)$ field, admits homogeneous black string and black brane solutions characterized by the mass, charge and volume of the flat directions. We also show that theories containing a single Lovelock term of order $n$ in the Lagrangian coupled to a $(p-1)$-form field admit simple oxidations only when $n$ equals $p$, giving rise to new, exact, charged black branes in higher curvature gravity. For General Relativity this stands for a Lagrangian containing the Einstein-Hilbert term coupled to a massless scalar field, and no-hair theorems in this case forbid the existence of black branes. In all these cases the field equations acquire an invariance under a global scaling scale transformation of the metric. As explicit examples we construct new magnetically charged black branes for cubic Lovelock theory coupled to a Kalb-Ramond field in dimensions $(3m+2)+q$, with $m$ and $q$ integers, and the latter denoting the number of extended flat directions. We also construct dyonic solutions in quartic Lovelock theory in dimension $(4m+2)+q$.
We construct time-dependent charged black string solutions in five-dimensional Einstein-Maxwell theory. In the far region, the spacetime approaches a five-dimensional Kasner universe with a expanding three-dimensional space and a shrinking extra dimension. Near the event horizon, the spacetime is approximately static and has a smooth event horizon. We also study the motion of test particles around the black string and show the existence of quasi-circular orbits. Finally, we briefly discuss the stability of this spacetime.
We study the motion of a string in the background of Reissner-Nordstrom black hole, in both AdS as well as asymptotically flat spacetimes. We describe the phase space of this dynamical system through largest Lyapunov exponent, Poincare sections and basins of attractions. We observe that string motion in these settings is particularly chaotic and comment on its characteristics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا