Do you want to publish a course? Click here

Experimental demonstration of phase estimation advantage in presence of depolarizing noise by using coherent measurements

67   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental investigation of the role of measurement in quantum metrology when the states of the probes are mixed. In particular, we investigated optimized local measurements and general global projective measurements, involving entangling operations, on noisy Werner states of polarization entangled photons. We demonstrate experimentally that global measurement presents an advantage in parameter estimation with respect to the optimized local strategy. Moreover, the global strategy provides unambiguous information about the parameter of interest even when the amount of noise is not well characterized. This shows that the coherence in quantum operations, such as the Bell-state projection device used in our protocol, can be used to further boost the quantum advantage in metrology and play a fundamental role in the design of future quantum measurement devices.



rate research

Read More

We investigate the optimal tradeoff between information gained about an unknown coherent state and the state disturbance caused by the measurement process. We propose several optical schemes that can enable this task, and we implement one of them, a scheme which relies on only linear optics and homodyne detection. Experimentally we reach near optimal performance, limited only by detection inefficiencies. In addition we show that such a scheme can be used to enhance the transmission fidelity of a class of noisy channels.
A significant problem for current quantum computers is noise. While there are many distinct noise channels, the depolarizing noise model often appropriately describes average noise for large circuits involving many qubits and gates. We present a method to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit and then correcting the output of the target circuit using the estimated rate. The method is experimentally validated on the simulation of the Heisenberg model. We find that our approach in combination with readout-error correction, randomized compiling, and zero-noise extrapolation produces results close to exact results even for circuits containing hundreds of CNOT gates.
Weak measurements may result in extra quantity of quantumness of correlations compared with standard projective measurement on a bipartite quantum state. We show that the quantumness of correlations by weak measurements can be consumed for information encoding which is only accessible by coherent quantum interactions. Then it can be considered as a resource for quantum information processing and can quantify this quantum advantage. We conclude that weak measurements can create more valuable quantum correlation.
The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, and the attainable quantum advantage is modest. Here we solve an oracle-based problem, known as learning parity with noise, using a five-qubit superconducting processor. Running classical and quantum algorithms on the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a quantum advantage already emerges in existing noisy systems
We consider estimating the parameter associated with the qubit depolarizing channel when the available initial states that might be employed are mixed. We use quantum Fisher information as a measure of the accuracy of estimation to compare protocols which use collections of qubits in product states to one in which the qubits are in a correlated state. We show that, for certain parameter values and initial states, the correlated state protocol can yield a greater accuracy per channel invocation than the product state protocols. We show that, for some parameters and initial states, using more than two qubits and channel invocations is advantageous. These results stand in contrast to the known optimal case that uses pure initial states and a single channel invocation on a pair of entangled qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا