Do you want to publish a course? Click here

Optical computation of a spin glass dynamics with tunable complexity

273   0   0.0 ( 0 )
 Added by Marco Leonetti Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin Glasses (SG) are paradigmatic models for physical, computer science, biological and social systems. The problem of studying the dynamics for SG models is NP hard, i.e., no algorithm solves it in polynomial time. Here we implement the optical simulation of a SG, exploiting the N segments of a wavefront shaping device to play the role of the spin variables, combining the interference at downstream of a scattering material to implement the random couplings between the spins (the J ij matrix) and measuring the light intensity on a number P of targets to retrieve the energy of the system. By implementing a plain Metropolis algorithm, we are able to simulate the spin model dynamics, while the degree of complexity of the potential energy landscape and the region of phase diagram explored is user-defined acting on the ratio the P/N = alpha. We study experimentally, numerically and analytically this peculiar system displaying a paramagnetic, a ferromagnetic and a SG phase, and we demonstrate that the transition temperature T g to the glassy phase from the paramagnetic phase grows with alpha. With respect to standard in silico approach, in the optical SG interaction terms are realized simultaneously when the independent light rays interferes at the target screen, enabling inherently parallel measurements of the energy, rather than computations scaling with N as in purely in silico simulations.



rate research

Read More

327 - F. Belletti , M. Cotallo , A. Cruz 2008
We study numerically the nonequilibrium dynamics of the Ising Spin Glass, for a time that spans eleven orders of magnitude, thus approaching the experimentally relevant scale (i.e. {em seconds}). We introduce novel analysis techniques that allow to compute the coherence length in a model-independent way. Besides, we present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with non-coarsening behavior.
475 - David Sherrington 2012
Complex macroscopic behaviour can arise in many-body systems with only very simple elements as a consequence of the combination of competition and inhomogeneity. This paper attempts to illustrate how statistical physics has driven this recognition, has contributed new insights and methodologies of wide application influencing many fields of science, and has been stimulated in return.
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point correlation for bonds at distance r that decays as $(1+r^2)^{-a/2}$, $a>0$. We study numerically with exact algorithms the ground state and domain wall excitations. Our results indicate that the inclusion of bond correlations does not lead to a spin-glass order at any finite temperature. A further analysis reveals that bond correlations have a strong effect at local length scales, inducing ferro/antiferromagnetic domains into the system. The length scale of ferro/antiferromagnetic order diverges exponentially as the correlation exponent approaches a critical value, $a to a_c = 0$. Thus, our results suggest that the system becomes a ferro/antiferromagnet only in the limit $a to 0$.
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect. Here we study quantum dynamics of an isolated 1d spin-glass under application of a transverse field. At high energy densities, the system is ergodic, relaxing via resonance avalanche mechanism, that is also responsible for the destruction of MBL in non-glassy systems with power-law interactions. At low energy densities, the interaction-induced fields obtain a power-law soft gap, making the resonance avalanche mechanism inefficient. This leads to the persistence of the spin-glass order, as demonstrated by resonance analysis and by numerical studies. A small fraction of resonant spins forms a thermalizing system with long-range entanglement, making this regime distinct from the conventional MBL. The model considered can be realized in systems of trapped ions, opening the door to investigating slow quantum dynamics induced by glassiness.
Numerical simulations on Ising Spin Glasses show that spin glass transitions do not obey the usual universality rules which hold at canonical second order transitions. On the other hand the dynamics at the approach to the transition appear to take up a universal form for all spin glasses. The implications for the fundamental physics of transitions in complex systems are addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا