Femtosecond laser pulse driven caustic spin wave beams


Abstract in English

Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this paper, we demonstrate this particular aspect by using an all-optical point-like source of continuous spin waves based on frequency comb rapid demagnetization. The emitted spin waves contain a range of k-vectors and by detuning the applied magnetic field slightly off the ferromagnetic resonance (FMR), we observe X-shaped caustic spin-wave patterns at $70^{circ}$ propagation angles as predicted by theory. When the harmonic of the light source approaches theFMR, the caustic pattern gives way to uniaxial spin-wave propagation perpendicular to the in-plane component of the applied field. This field-controlled propagation pattern and directionality of optically emitted short-wavelength spin waves provide additional degrees of freedom when designing magnonic devices.

Download