gPAV-Based Unconditionally Energy-Stable Schemes for the Cahn-Hilliard Equation: Stability and Error Analysis


Abstract in English

We present several first-order and second-order numerical schemes for the Cahn-Hilliard equation with discrete unconditional energy stability. These schemes stem from the generalized Positive Auxiliary Variable (gPAV) idea, and require only the solution of linear algebraic systems with a constant coefficient matrix. More importantly, the computational complexity (operation count per time step) of these schemes is approximately a half of those of the gPAV and the scalar auxiliary variable (SAV) methods in previous works. We investigate the stability properties of the proposed schemes to establish stability bounds for the field function and the auxiliary variable, and also provide their error analyses. Numerical experiments are presented to verify the theoretical analyses and also demonstrate the stability of the schemes at large time step sizes.

Download