Do you want to publish a course? Click here

Categorical anomaly detection in heterogeneous data using minimum description length clustering

228   0   0.0 ( 0 )
 Added by James Cheney
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Fast and effective unsupervised anomaly detection algorithms have been proposed for categorical data based on the minimum description length (MDL) principle. However, they can be ineffective when detecting anomalies in heterogeneous datasets representing a mixture of different sources, such as security scenarios in which system and user processes have distinct behavior patterns. We propose a meta-algorithm for enhancing any MDL-based anomaly detection model to deal with heterogeneous data by fitting a mixture model to the data, via a variant of k-means clustering. Our experimental results show that using a discrete mixture model provides competitive performance relative to two previous anomaly detection algorithms, while mixtures of more sophisticated models yield further gains, on both synthetic datasets and realistic datasets from a security scenario.



rate research

Read More

This is an up-to-date introduction to and overview of the Minimum Description Length (MDL) Principle, a theory of inductive inference that can be applied to general problems in statistics, machine learning and pattern recognition. While MDL was originally based on data compression ideas, this introduction can be read without any knowledge thereof. It takes into account all major developments since 2007, the last time an extensive overview was written. These include new methods for model selection and averaging and hypothesis testing, as well as the first completely general definition of {em MDL estimators}. Incorporating these developments, MDL can be seen as a powerful extension of both penalized likelihood and Bayesian approaches, in which penalization functions and prior distributions are replaced by more general luckiness functions, average-case methodology is replaced by a more robust worst-case approach, and in which methods classically viewed as highly distinct, such as AIC vs BIC and cross-validation vs Bayes can, to a large extent, be viewed from a unified perspective.
Modern statistical modeling is an important complement to the more traditional approach of physics where Complex Systems are studied by means of extremely simple idealized models. The Minimum Description Length (MDL) is a principled approach to statistical modeling combining Occams razor with Information Theory for the selection of models providing the most concise descriptions. In this work, we introduce the Boltzmannian MDL (BMDL), a formalization of the principle of MDL with a parametric complexity conveniently formulated as the free-energy of an artificial thermodynamic system. In this way, we leverage on the rich theoretical and technical background of statistical mechanics, to show the crucial importance that phase transitions and other thermodynamic concepts have on the problem of statistical modeling from an information theoretic point of view. For example, we provide information theoretic justifications of why a high-temperature series expansion can be used to compute systematic approximations of the BMDL when the formalism is used to model data, and why statistically significant model selections can be identified with ordered phases when the BMDL is used to model models. To test the introduced formalism, we compute approximations of BMDL for the problem of community detection in complex networks, where we obtain a principled MDL derivation of the Girvan-Newman (GN) modularity and the Zhang-Moore (ZM) community detection method. Here, by means of analytical estimations and numerical experiments on synthetic and empirical networks, we find that BMDL-based correction terms of the GN modularity improve the quality of the detected communities and we also find an information theoretic justification of why the ZM criterion for estimation of the number of network communities is better than alternative approaches such as the bare minimization of a free energy.
71 - D. J. Cook , L. B. Holder 1994
The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUEs ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.
Within a large database G containing graphs with labeled nodes and directed, multi-edges; how can we detect the anomalous graphs? Most existing work are designed for plain (unlabeled) and/or simple (unweighted) graphs. We introduce CODETECT, the first approach that addresses the anomaly detection task for graph databases with such complex nature. To this end, it identifies a small representative set S of structural patterns (i.e., node-labeled network motifs) that losslessly compress database G as concisely as possible. Graphs that do not compress well are flagged as anomalous. CODETECT exhibits two novel building blocks: (i) a motif-based lossless graph encoding scheme, and (ii) fast memory-efficient search algorithms for S. We show the effectiveness of CODETECT on transaction graph databases from three different corporations, where existing baselines adjusted for the task fall behind significantly, across different types of anomalies and performance metrics.
With the widely used smart meters in the energy sector, anomaly detection becomes a crucial mean to study the unusual consumption behaviors of customers, and to discover unexpected events of using energy promptly. Detecting consumption anomalies is, essentially, a real-time big data analytics problem, which does data mining on a large amount of parallel data streams from smart meters. In this paper, we propose a supervised learning and statistical-based anomaly detection method, and implement a Lambda system using the in-memory distributed computing framework, Spark and its extension Spark Streaming. The system supports not only iterative detection model refreshment from scalable data sets, but also real-time detection on scalable live data streams. This paper empirically evaluates the system and the detection algorithm, and the results show the effectiveness and the scalability of the proposed lambda detection system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا