Do you want to publish a course? Click here

Combinatorial Pure Exploration with Full-Bandit or Partial Linear Feedback

245   0   0.0 ( 0 )
 Added by Yuko Kuroki
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we first study the problem of combinatorial pure exploration with full-bandit feedback (CPE-BL), where a learner is given a combinatorial action space $mathcal{X} subseteq {0,1}^d$, and in each round the learner pulls an action $x in mathcal{X}$ and receives a random reward with expectation $x^{top} theta$, with $theta in mathbb{R}^d$ a latent and unknown environment vector. The objective is to identify the optimal action with the highest expected reward, using as few samples as possible. For CPE-BL, we design the first {em polynomial-time adaptive} algorithm, whose sample complexity matches the lower bound (within a logarithmic factor) for a family of instances and has a light dependence of $Delta_{min}$ (the smallest gap between the optimal action and sub-optimal actions). Furthermore, we propose a novel generalization of CPE-BL with flexible feedback structures, called combinatorial pure exploration with partial linear feedback (CPE-PL), which encompasses several families of sub-problems including full-bandit feedback, semi-bandit feedback, partial feedback and nonlinear reward functions. In CPE-PL, each pull of action $x$ reports a random feedback vector with expectation of $M_{x} theta $, where $M_x in mathbb{R}^{m_x times d}$ is a transformation matrix for $x$, and gains a random (possibly nonlinear) reward related to $x$. For CPE-PL, we develop the first {em polynomial-time} algorithm, which simultaneously addresses limited feedback, general reward function and combinatorial action space, and provide its sample complexity analysis. Our empirical evaluation demonstrates that our algorithms run orders of magnitude faster than the existing ones, and our CPE-BL algorithm is robust across different $Delta_{min}$ settings while our CPE-PL algorithm is the only one returning correct answers for nonlinear reward functions.



rate research

Read More

Combinatorial optimization is one of the fundamental research fields that has been extensively studied in theoretical computer science and operations research. When developing an algorithm for combinatorial optimization, it is commonly assumed that parameters such as edge weights are exactly known as inputs. However, this assumption may not be fulfilled since input parameters are often uncertain or initially unknown in many applications such as recommender systems, crowdsourcing, communication networks, and online advertisement. To resolve such uncertainty, the problem of combinatorial pure exploration of multi-armed bandits (CPE) and its variants have recieved increasing attention. Earlier work on CPE has studied the semi-bandit feedback or assumed that the outcome from each individual edge is always accessible at all rounds. However, due to practical constraints such as a budget ceiling or privacy concern, such strong feedback is not always available in recent applications. In this article, we review recently proposed techniques for combinatorial pure exploration problems with limited feedback.
Exploration policies in Bayesian bandits maximize the average reward over problem instances drawn from some distribution $mathcal{P}$. In this work, we learn such policies for an unknown distribution $mathcal{P}$ using samples from $mathcal{P}$. Our approach is a form of meta-learning and exploits properties of $mathcal{P}$ without making strong assumptions about its form. To do this, we parameterize our policies in a differentiable way and optimize them by policy gradients, an approach that is general and easy to implement. We derive effective gradient estimators and introduce novel variance reduction techniques. We also analyze and experiment with various bandit policy classes, including neural networks and a novel softmax policy. The latter has regret guarantees and is a natural starting point for our optimization. Our experiments show the versatility of our approach. We also observe that neural network policies can learn implicit biases expressed only through the sampled instances.
169 - Kun Wang , Canzhe Zhao , Shuai Li 2021
Conservative mechanism is a desirable property in decision-making problems which balance the tradeoff between the exploration and exploitation. We propose the novel emph{conservative contextual combinatorial cascading bandit ($C^4$-bandit)}, a cascading online learning game which incorporates the conservative mechanism. At each time step, the learning agent is given some contexts and has to recommend a list of items but not worse than the base strategy and then observes the reward by some stopping rules. We design the $C^4$-UCB algorithm to solve the problem and prove its n-step upper regret bound for two situations: known baseline reward and unknown baseline reward. The regret in both situations can be decomposed into two terms: (a) the upper bound for the general contextual combinatorial cascading bandit; and (b) a constant term for the regret from the conservative mechanism. We also improve the bound of the conservative contextual combinatorial bandit as a by-product. Experiments on synthetic data demonstrate its advantages and validate our theoretical analysis.
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervised learning approach, can be adjusted tothe new problem formulation. We also propose avariant of the linear contextual bandit with semi-supervised missing rewards imputation. We thentake the best of both approaches to develop multi-GCN embedded contextual bandit. Our algorithmsare verified on several real world datasets.
We study the combinatorial pure exploration problem Best-Set in stochastic multi-armed bandits. In a Best-Set instance, we are given $n$ arms with unknown reward distributions, as well as a family $mathcal{F}$ of feasible subsets over the arms. Our goal is to identify the feasible subset in $mathcal{F}$ with the maximum total mean using as few samples as possible. The problem generalizes the classical best arm identification problem and the top-$k$ arm identification problem, both of which have attracted significant attention in recent years. We provide a novel instance-wise lower bound for the sample complexity of the problem, as well as a nontrivial sampling algorithm, matching the lower bound up to a factor of $ln|mathcal{F}|$. For an important class of combinatorial families, we also provide polynomial time implementation of the sampling algorithm, using the equivalence of separation and optimization for convex program, and approximate Pareto curves in multi-objective optimization. We also show that the $ln|mathcal{F}|$ factor is inevitable in general through a nontrivial lower bound construction. Our results significantly improve several previous results for several important combinatorial constraints, and provide a tighter understanding of the general Best-Set problem. We further introduce an even more general problem, formulated in geometric terms. We are given $n$ Gaussian arms with unknown means and unit variance. Consider the $n$-dimensional Euclidean space $mathbb{R}^n$, and a collection $mathcal{O}$ of disjoint subsets. Our goal is to determine the subset in $mathcal{O}$ that contains the $n$-dimensional vector of the means. The problem generalizes most pure exploration bandit problems studied in the literature. We provide the first nearly optimal sample complexity upper and lower bounds for the problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا