Do you want to publish a course? Click here

Global Attention Improves Graph Networks Generalization

118   0   0.0 ( 0 )
 Added by Omri Puny
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper advocates incorporating a Low-Rank Global Attention (LRGA) module, a computation and memory efficient variant of the dot-product attention (Vaswani et al., 2017), to Graph Neural Networks (GNNs) for improving their generalization power. To theoretically quantify the generalization properties granted by adding the LRGA module to GNNs, we focus on a specific family of expressive GNNs and show that augmenting it with LRGA provides algorithmic alignment to a powerful graph isomorphism test, namely the 2-Folklore Weisfeiler-Lehman (2-FWL) algorithm. In more detail we: (i) consider the recent Random Graph Neural Network (RGNN) (Sato et al., 2020) framework and prove that it is universal in probability; (ii) show that RGNN augmented with LRGA aligns with 2-FWL update step via polynomial kernels; and (iii) bound the sample complexity of the kernels feature map when learned with a randomly initialized two-layer MLP. From a practical point of view, augmenting existing GNN layers with LRGA produces state of the art results in current GNN benchmarks. Lastly, we observe that augmenting various GNN architectures with LRGA often closes the performance gap between different models.



rate research

Read More

Inspired by convolutional neural networks on 1D and 2D data, graph convolutional neural networks (GCNNs) have been developed for various learning tasks on graph data, and have shown superior performance on real-world datasets. Despite their success, there is a dearth of theoretical explorations of GCNN models such as their generalization properties. In this paper, we take a first step towards developing a deeper theoretical understanding of GCNN models by analyzing the stability of single-layer GCNN models and deriving their generalization guarantees in a semi-supervised graph learning setting. In particular, we show that the algorithmic stability of a GCNN model depends upon the largest absolute eigenvalue of its graph convolution filter. Moreover, to ensure the uniform stability needed to provide strong generalization guarantees, the largest absolute eigenvalue must be independent of the graph size. Our results shed new insights on the design of new & improved graph convolution filters with guaranteed algorithmic stability. We evaluate the generalization gap and stability on various real-world graph datasets and show that the empirical results indeed support our theoretical findings. To the best of our knowledge, we are the first to study stability bounds on graph learning in a semi-supervised setting and derive generalization bounds for GCNN models.
We present an efficient coresets-based neural network compression algorithm that sparsifies the parameters of a trained fully-connected neural network in a manner that provably approximates the networks output. Our approach is based on an importance sampling scheme that judiciously defines a sampling distribution over the neural network parameters, and as a result, retains parameters of high importance while discarding redundant ones. We leverage a novel, empirical notion of sensitivity and extend traditional coreset constructions to the application of compressing parameters. Our theoretical analysis establishes guarantees on the size and accuracy of the resulting compressed network and gives rise to generalization bounds that may provide new insights into the generalization properties of neural networks. We demonstrate the practical effectiveness of our algorithm on a variety of neural network configurations and real-world data sets.
145 - Yang Ye , , Shihao Ji 2019
Graph Neural Networks (GNNs) have proved to be an effective representation learning framework for graph-structured data, and have achieved state-of-the-art performance on many practical predictive tasks, such as node classification, link prediction and graph classification. Among the variants of GNNs, Graph Attention Networks (GATs) learn to assign dense attention coefficients over all neighbors of a node for feature aggregation, and improve the performance of many graph learning tasks. However, real-world graphs are often very large and noisy, and GATs are prone to overfitting if not regularized properly. Even worse, the local aggregation mechanism of GATs may fail on disassortative graphs, where nodes within local neighborhood provide more noise than useful information for feature aggregation. In this paper, we propose Sparse Graph Attention Networks (SGATs) that learn sparse attention coefficients under an $L_0$-norm regularization, and the learned sparse attentions are then used for all GNN layers, resulting in an edge-sparsified graph. By doing so, we can identify noisy/task-irrelevant edges, and thus perform feature aggregation on most informative neighbors. Extensive experiments on synthetic and real-world graph learning benchmarks demonstrate the superior performance of SGATs. In particular, SGATs can remove about 50%-80% edges from large assortative graphs, while retaining similar classification accuracies. On disassortative graphs, SGATs prune majority of noisy edges and outperform GATs in classification accuracies by significant margins. Furthermore, the removed edges can be interpreted intuitively and quantitatively. To the best of our knowledge, this is the first graph learning algorithm that shows significant redundancies in graphs and edge-sparsified graphs can achieve similar or sometimes higher predictive performances than original graphs.
Graph neural networks (GNNs) can process graphs of different sizes, but their ability to generalize across sizes, specifically from small to large graphs, is still not well understood. In this paper, we identify an important type of data where generalization from small to large graphs is challenging: graph distributions for which the local structure depends on the graph size. This effect occurs in multiple important graph learning domains, including social and biological networks. We first prove that when there is a difference between the local structures, GNNs are not guaranteed to generalize across sizes: there are bad global minima that do well on small graphs but fail on large graphs. We then study the size-generalization problem empirically and demonstrate that when there is a discrepancy in local structure, GNNs tend to converge to non-generalizing solutions. Finally, we suggest two approaches for improving size generalization, motivated by our findings. Notably, we propose a novel Self-Supervised Learning (SSL) task aimed at learning meaningful representations of local structures that appear in large graphs. Our SSL task improves classification accuracy on several popular datasets.
497 - Renjie Liao , Yujia Li , Yang Song 2019
We propose a new family of efficient and expressive deep generative models of graphs, called Graph Recurrent Attention Networks (GRANs). Our model generates graphs one block of nodes and associated edges at a time. The block size and sampling stride allow us to trade off sample quality for efficiency. Compared to previous RNN-based graph generative models, our framework better captures the auto-regressive conditioning between the already-generated and to-be-generated parts of the graph using Graph Neural Networks (GNNs) with attention. This not only reduces the dependency on node ordering but also bypasses the long-term bottleneck caused by the sequential nature of RNNs. Moreover, we parameterize the output distribution per block using a mixture of Bernoulli, which captures the correlations among generated edges within the block. Finally, we propose to handle node orderings in generation by marginalizing over a family of canonical orderings. On standard benchmarks, we achieve state-of-the-art time efficiency and sample quality compared to previous models. Additionally, we show our model is capable of generating large graphs of up to 5K nodes with good quality. To the best of our knowledge, GRAN is the first deep graph generative model that can scale to this size. Our code is released at: https://github.com/lrjconan/GRAN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا