No Arabic abstract
We report a search result for a light sterile neutrino oscillation with roughly 2200 live days of data in the RENO experiment. The search is performed by electron antineutrino ($overline{ u}_e$) disappearance taking place between six 2.8 GW$_{text{th}}$ reactors and two identical detectors located at 294 m (near) and 1383 m (far) from the center of reactor array. A spectral comparison between near and far detectors can explore reactor $overline{ u}_e$ oscillations to a light sterile neutrino. An observed spectral difference is found to be consistent with that of the three-flavor oscillation model. This yields limits on $sin^{2} 2theta_{14}$ in the $10^{-4} lesssim |Delta m_{41}^2| lesssim 0.5$ eV$^2$ region, free from reactor $overline{ u}_e$ flux and spectrum uncertainties. The RENO result provides the most stringent limits on sterile neutrino mixing at $|Delta m^2_{41}| lesssim 0.002$ eV$^2$ using the $overline{ u}_e$ disappearance channel.
We present a reactor model independent search for sterile neutrino oscillation using 2,509,days of RENO near detector data and 180 days of NEOS data. The reactor related systematic uncertainties are significantly suppressed as both detectors are located at the same reactor complex of Hanbit Nuclear Power Plant. The search is performed by electron antineutrino,($overline{ u}_e$) disappearance between six reactors and two detectors with baselines of 294,m,(RENO) and 24,m,(NEOS). A spectral comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction from the RENO measurement can explore reactor $overline{ u}_e$ oscillations to sterile neutrino. Based on the comparison, we obtain a 95% C.L. excluded region of $0.1<|Delta m_{41}^2|<7$,eV$^2$. We also obtain a 68% C.L. allowed region with the best fit of $|Delta m_{41}^2|=2.41,pm,0.03,$,eV$^2$ and $sin^2 2theta_{14}$=0.08$,pm,$0.03 with a p-value of 8.2%. Comparisons of obtained reactor antineutrino spectra at reactor sources are made among RENO, NEOS, and Daya Bay to find a possible spectral variation.
An experiment to search for light sterile neutrinos was conducted at a reactor with a thermal power of 2.8 GW located at the Hanbit nuclear power complex. The search was done with a detector consisting of a ton of Gd-loaded liquid scintillator in a tendon gallery approximately 24 m from the reactor core. The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22. The shape of the antineutrino energy spectrum obtained from eight-month data-taking period is compared with a hypothesis of oscillations due to active-sterile antineutrino mixing. It is found to be consistent with no oscillation. An excess around 5 MeV prompt energy range is observed as seen in existing longer baseline experiments. The parameter space of $sin^{2}2theta_{14}$ down below 0.1 for $Delta m^{2}_{41}$ ranging from 0.2 eV$^{2}$ to 2.3 eV$^{2}$ and the optimum point for the previously reported reactor antineutrino anomaly are excluded with a confidence level higher than 90%.
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiments unique configuration of multiple baselines from six 2.9~GW$_{rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{rm -3}~{rm eV}^{2} < |Delta m_{41}^{2}| < 0.3~{rm eV}^{2}$ range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on $sin^22theta_{14}$ cover the $10^{-3}~{rm eV}^{2} lesssim |Delta m^{2}_{41}| lesssim 0.1~{rm eV}^{2}$ region, which was largely unexplored.
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The flux anomaly is known as the Reactor Antineutrino Anomaly and could be caused by the existence of a light sterile neutrino eigenstate participating in the neutrino oscillation phenomenon. Introducing a sterile state implies the presence of a fourth mass eigenstate, while global fits favour oscillation parameters around $sin^{2}(2theta)=0.09$ and $Delta m^{2}=1.8textrm{eV}^{2}$. The STEREO experiment was built to finally solve this puzzle. It is one of the first running experiments built to search for eV sterile neutrinos and takes data since end of 2016 at ILL Grenoble, France. At a short baseline of 10 metres, it measures the antineutrino flux and spectrum emitted by a compact research reactor. The segmentation of the detector in six target cells allows for independent measurements of the neutrino spectrum at multiple baselines. An active-sterile flavour oscillation could be unambiguously detected, as it distorts the spectral shape of each cells measurement differently. This contribution gives an overview on the STEREO experiment, along with details on the detector design, detection principle and the current status of data analysis.
The STEREO experiment is designed to test the hypothesis of light sterile neutrinos being the cause of the Reactor Antineutrino Anomaly. It measures the antineutrino energy spectrum from the compact core of the ILL research reactor in six identical detector cells covering baselines between 9 and 11 m. Results from 119 days of reactor turned on and 211 days of reactor turned off are reported. Using a direct comparison between neutrino interaction rates of all cells, independent of any flux prediction, we find compatibility with the null oscillation hypothesis. The best fit point of the Reactor Antineutrino Anomaly is rejected at 99% C.L.