Do you want to publish a course? Click here

Entanglement and correlation in two-nucleon systems

361   0   0.0 ( 0 )
 Added by Andras Kruppa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the mode entanglement and correlation of two fermionic particles. We study the one- and two-mode entropy and a global characteristic, the one-body entanglement entropy. We consider not only angular momentum coupled states with single configuration but use the configuration interaction method. With the help of the Slater decomposition, we derive analytical expressions for the entanglement measures. We show that when the total angular momentum is zero specific single configurations describe maximally entangled states. It turns out that for a finite number of associated modes the one- and two-mode entropies have identical values. In the shell model framework, we numerically study two valence neutrons in the $sd$ shell. The one-body entanglement entropy of the ground state is close to the maximal value and the associated modes have the largest mutual information.



rate research

Read More

We discuss renormalization group approaches to strongly interacting Fermi systems, in the context of Landaus theory of Fermi liquids and functional methods, and their application to neutron matter.
We study some general properties of coupled quantum systems. We consider simple interactions between two copies of identical Hamiltonians such as the SYK model, Pauli spin chains with random magnetic field and harmonic oscillators. Such couplings make the ground states close to the thermofield double states of the uncoupled Hamiltonians. For the coupled SYK model, we push the numerical computation further towards the thermodynamic limit so that an extrapolation in the size of the system is possible. We find good agreement between the extrapolated numerical result and the analytic result in the large-$q$ limit. We also consider the coupled gauged matrix model and vector model, and argue that the deconfinement is associated with the loss of the entanglement, similarly to the previous observation for the coupled SYK model. The understanding of the microscopic mechanism of the confinement/deconfinement transition enables us to estimate the quantum entanglement precisely, and backs up the dual gravity interpretation which relates the deconfinement to the disappearance of the wormhole. Our results demonstrate the importance of the entanglement between the color degrees of freedom in the emergence of the bulk geometry from quantum field theory via holography.
Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large values of ${k}_{rel}gtrsim 2,,fm^{-1}$ and small values of ${K}_{CM} lesssim 1.0,,fm^{-1}$, both distributions are angle independent and decrease with increasing $K_{CM}$, with the $pn$ distribution factorizing into the deuteron momentum distribution times a rapidly decreasing function of $K_{CM}$, in agreement with the two-nucleon (2N) short range correlation (SRC) picture. When $K_{CM}$ and $k_{rel}$ are both large, the distributions exhibit a strong angle dependence, which is evidence of three-nucleon (3N) SRC. The predicted center-of-mass and angular dependence of 2N and 3N SRC should be observable in two-nucleon knock-out processes $A(e,epN)X$.
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find that the EoP becomes a non-monotonic function of the distance between $A$ and $B$ when the total number of lattice sites is small. When it is large, the EoP becomes monotonic and shows a plateau-like behavior. Moreover, we show that the original reflection symmetry which exchanges $A$ and $B$ can get broken in optimally purified systems. In the Ising model, we find this symmetry breaking in the ferromagnetic phase. We provide an interpretation of our results in terms of the interplay between classical and quantum correlations.
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron or helion, in fact, of any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (i.e. electric fields leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. We discuss two theorems describing these phenomena and report about the cosmological motivation for an existence of CP breaking beyond what is generated by the Kobayashi-Maskawa mechanism in the Standard Model and what this might imply for the permanent electric dipole moments of the nucleon and light nuclei by estimating a window of opportunity for physics beyond what is currently known. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the relevance for disentangling underlying New Physics sources are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا