No Arabic abstract
In the next decades, the astrobiological community will debate whether the first observations of oxygen in an exoplanet$$s atmosphere signifies life, so it is critical to establish procedures now for collection and interpretation of such data. We present a step-by-step observational strategy for using oxygen as a robust biosignature, to prioritize exoplanet targets and design future observations. It is premised on avoiding planets lacking subaerial weathering of continents, which would imply geochemical cycles drastically different from Earth$$s, precluding use of oxygen as a biosignature. The strategy starts with the most readily obtained data: semi-major axis and stellar luminosity to ensure residence in the habitable zone; stellar XUV flux, to ensure an exoplanet can retain a secondary (outgassed) atmosphere. Next, high-precision mass and radius information should be combined with high-precision stellar abundance data, to constrain the exoplanet$$s water content; those incompatible with less than 0.1 wt % H$_{2}$O can be deprioritized. Then, reflectance photometry or low-resolution transmission spectroscopy should confirm an optically thin atmosphere. Subsequent long-duration, high-resolution transmission spectroscopy should search for oxygen and ensure that water vapor and CO$_{2}$ are present only at low (10$^{2}$-10$^{4}$ ppm levels). Assuming oxygen is found, attribution to life requires the difficult acquisition of a detailed, multispectral light curve of the exoplanet to ensure both surface land and water. Exoplanets failing some of these steps might be habitable, even have observable biogenic oxygen, but should be deprioritized because oxygen could not be attributed unambiguously to life. We show how this is the case for the Solar System, the 55 Cnc System, and the TRAPPIST-1 System, in which only the Earth and TRAPPIST-1e successfully pass through our procedure.
Here we advocate an observational strategy to help prioritize exoplanet observations. It starts with more easily obtained observational data, and ranks exoplanets for more difficult follow-up observations based on the likelihood of avoiding planets for which oxygen is a false positives or even an inconclusive signature of life. We find that for oxygen to be a robust biosignature, both land and surface water must be present. Landless exoplanets have much slower biogeochemical cycles, so while oxygenic photosynthesizing life could exist on such planets, it could not produce oxygen at a rate competitive with abiotic rates such as photolysis. These habitable planets, whose life would not be detectable, should be avoided.
Spectroscopy of transiting exoplanets can be used to investigate their atmospheric properties and habitability. Combining radial velocity (RV) and transit data provides additional information on exoplanet physical properties. We detect a transiting rocky planet with an orbital period of 1.467 days around the nearby red dwarf star Gliese 486. The planet Gliese 486 b is 2.81 Earth masses and 1.31 Earth radii, with uncertainties of 5%, as determined from RV data and photometric light curves. The host star is at a distance of ~8.1 parsecs, has a J-band magnitude of ~7.2, and is observable from both hemispheres of Earth. On the basis of these properties and the planets short orbital period and high equilibrium temperature, we show that this terrestrial planet is suitable for emission and transit spectroscopy.
Oxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition. It is unclear whether this oxidation of rocks in the Solar System is typical among other planetary systems. We exploit the elemental abundances observed in six white dwarfs polluted by the accretion of rocky bodies to determine the fraction of oxidized iron in those extrasolar rocky bodies and therefore their oxygen fugacities. The results are consistent with the oxygen fugacities of Earth, Mars, and typical asteroids in the Solar System, suggesting that at least some rocky exoplanets are geophysically and geochemically similar to Earth.
NEID is a high-resolution optical spectrograph on the WIYN 3.5-m telescope at Kitt Peak National Observatory and will soon join the new generation of extreme precision radial velocity instruments in operation around the world. We plan to use the instrument to conduct the NEID Earth Twin Survey (NETS) over the course of the next 5 years, collecting hundreds of observations of some of the nearest and brightest stars in an effort to probe the regime of Earth-mass exoplanets. Even if we take advantage of the extreme instrumental precision conferred by NEID, it will remain difficult to disentangle the weak (~10 cm s$^{-1}$) signals induced by such low-mass, long-period exoplanets from stellar noise for all but the quietest host stars. In this work, we present a set of quantitative selection metrics which we use to identify an initial NETS target list consisting of stars conducive to the detection of exoplanets in the regime of interest. We also outline a set of observing strategies with which we aim to mitigate uncertainty contributions from intrinsic stellar variability and other sources of noise.
LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of modern exoplanetary science. Characterising such planets and searching for traces of life requires the direct detection of their signals. LOUPE provides unique spectral flux and polarisation data of sunlight reflected by the Earth, the only planet known to harbor life. This data will be used to test numerical codes to predict signals of Earth-like exoplanets, to test algorithms that retrieve planet properties, and to fine-tune the design and observational strategies of future space observatories. From the Moon, LOUPE will continuously see the entire Earth, enabling it to monitor the signal changes due to the planets daily rotation, weather patterns, and seasons, across all phase angles. Here, we present both the science case and the technology behind LOUPEs instrumental and mission design.