Do you want to publish a course? Click here

Monolingual Data Selection Analysis for English-Mandarin Hybrid Code-switching Speech Recognition

76   0   0.0 ( 0 )
 Added by Haobo Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we conduct data selection analysis in building an English-Mandarin code-switching (CS) speech recognition (CSSR) system, which is aimed for a real CSSR contest in China. The overall training sets have three subsets, i.e., a code-switching data set, an English (LibriSpeech) and a Mandarin data set respectively. The code-switching data are Mandarin dominated. First of all, it is found using the overall data yields worse results, and hence data selection study is necessary. Then to exploit monolingual data, we find data matching is crucial. Mandarin data is closely matched with the Mandarin part in the code-switching data, while English data is not. However, Mandarin data only helps on those utterances that are significantly Mandarin-dominated. Besides, there is a balance point, over which more monolingual data will divert the CSSR system, degrading results. Finally, we analyze the effectiveness of combining monolingual data to train a CSSR system with the HMM-DNN hybrid framework. The CSSR system can perform within-utterance code-switch recognition, but it still has a margin with the one trained on code-switching data.



rate research

Read More

Code-switching (CS) refers to a linguistic phenomenon where a speaker uses different languages in an utterance or between alternating utterances. In this work, we study end-to-end (E2E) approaches to the Mandarin-English code-switching speech recognition (CSSR) task. We first examine the effectiveness of using data augmentation and byte-pair encoding (BPE) subword units. More importantly, we propose a multitask learning recipe, where a language identification task is explicitly learned in addition to the E2E speech recognition task. Furthermore, we introduce an efficient word vocabulary expansion method for language modeling to alleviate data sparsity issues under the code-switching scenario. Experimental results on the SEAME data, a Mandarin-English CS corpus, demonstrate the effectiveness of the proposed methods.
Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in one or both languages being mixed. In this work, we show that fine-tuning ASR models on code-switched speech harms performance on monolingual speech. We point out the need to optimize models for code-switching while also ensuring that monolingual performance is not sacrificed. Monolingual models may be trained on thousands of hours of speech which may not be available for re-training a new model. We propose using the Learning Without Forgetting (LWF) framework for code-switched ASR when we only have access to a monolingual model and do not have the data it was trained on. We show that it is possible to train models using this framework that perform well on both code-switched and monolingual test sets. In cases where we have access to monolingual training data as well, we propose regularization strategies for fine-tuning models for code-switching without sacrificing monolingual accuracy. We report improvements in Word Error Rate (WER) in monolingual and code-switched test sets compared to baselines that use pooled data and simple fine-tuning.
Code-switching (CS) occurs when a speaker alternates words of two or more languages within a single sentence or across sentences. Automatic speech recognition (ASR) of CS speech has to deal with two or more languages at the same time. In this study, we propose a Transformer-based architecture with two symmetric language-specific encoders to capture the individual language attributes, that improve the acoustic representation of each language. These representations are combined using a language-specific multi-head attention mechanism in the decoder module. Each encoder and its corresponding attention module in the decoder are pre-trained using a large monolingual corpus aiming to alleviate the impact of limited CS training data. We call such a network a multi-encoder-decoder (MED) architecture. Experiments on the SEAME corpus show that the proposed MED architecture achieves 10.2% and 10.8% relative error rate reduction on the CS evaluation sets with Mandarin and English as the matrix language respectively.
In this paper, we present our initial efforts for building a code-switching (CS) speech recognition system leveraging existing acoustic models (AMs) and language models (LMs), i.e., no training required, and specifically targeting intra-sentential switching. To achieve such an ambitious goal, new mechanisms for foreign pronunciation generation and language model (LM) enrichment have been devised. Specifically, we have designed an automatic approach to obtain high quality pronunciation of foreign language (FL) words in the native language (NL) phoneme set using existing acoustic phone decoders and an LSTM-based grapheme-to-phoneme (G2P) model. Improved accented pronunciations have thus been obtained by learning foreign pronunciations directly from data. Furthermore, a code-switching LM was deployed by converting the original NL LM into a CS LM using translated word pairs and borrowing statistics for the NL LM. Experimental evidence clearly demonstrates that our approach better deals with accented foreign pronunciations than techniques based on human labeling. Moreover, our best system achieves a 55.5% relative word error rate reduction from 34.4%, obtained with a conventional monolingual ASR system, to 15.3% on an intra-sentential CS task without harming the monolingual recognition accuracy.
The lack of code-switch training data is one of the major concerns in the development of end-to-end code-switching automatic speech recognition (ASR) models. In this work, we propose a method to train an improved end-to-end code-switching ASR using only monolingual data. Our method encourages the distributions of output token embeddings of monolingual languages to be similar, and hence, promotes the ASR model to easily code-switch between languages. Specifically, we propose to use Jensen-Shannon divergence and cosine distance based constraints. The former will enforce output embeddings of monolingual languages to possess similar distributions, while the later simply brings the centroids of two distributions to be close to each other. Experimental results demonstrate high effectiveness of the proposed method, yielding up to 4.5% absolute mixed error rate improvement on Mandarin-English code-switching ASR task.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا