Searching for dark matter with an unequal delay interferometer


Abstract in English

We propose a new type of experiment that compares the frequency of a clock (an ultra-stable optical cavity in this case) at time $t$ to its own frequency some time $t-T$ earlier, by storing the output signal (photons) in a fibre delay line. In ultra-light oscillating dark matter (DM) models, such an experiment is sensitive to coupling of DM to the standard model fields, through oscillations of the cavity and fibre lengths and of the fibre refractive index. Additionally, the sensitivity is significantly enhanced around the mechanical resonances of the cavity. We present experimental result of such an experiment and report no evidence of DM for masses in the [$4.1times 10^{-11}$, $8.3times 10^{-10}$]~eV region. In addition, we improve constraints on the involved coupling constants by one order of magnitude in a standard galactic DM model, at the mass corresponding to the resonant frequency of our cavity. Furthermore, in the model of relaxion DM, we improve on existing constraints over the whole DM mass range by about one order of magnitude, and up to six orders of magnitude at resonance.

Download