Do you want to publish a course? Click here

Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite Epochs

96   0   0.0 ( 0 )
 Added by Xunpeng Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Adaptive gradient methods have attracted much attention of machine learning communities due to the high efficiency. However their acceleration effect in practice, especially in neural network training, is hard to analyze, theoretically. The huge gap between theoretical convergence results and practical performances prevents further understanding of existing optimizers and the development of more advanced optimization methods. In this paper, we provide adaptive gradient methods a novel analysis with an additional mild assumption, and revise AdaGrad to radagrad for matching a better provable convergence rate. To find an $epsilon$-approximate first-order stationary point in non-convex objectives, we prove random shuffling radagrad achieves a $tilde{O}(T^{-1/2})$ convergence rate, which is significantly improved by factors $tilde{O}(T^{-1/4})$ and $tilde{O}(T^{-1/6})$ compared with existing adaptive gradient methods and random shuffling SGD, respectively. To the best of our knowledge, it is the first time to demonstrate that adaptive gradient methods can deterministically be faster than SGD after finite epochs. Furthermore, we conduct comprehensive experiments to validate the additional mild assumption and the acceleration effect benefited from second moments and random shuffling.



rate research

Read More

106 - Yi-An Ma , Yuansi Chen , Chi Jin 2018
Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these two kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multi-stable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.
Model-free learning-based control methods have seen great success recently. However, such methods typically suffer from poor sample complexity and limited convergence guarantees. This is in sharp contrast to classical model-based control, which has a rich theory but typically requires strong modeling assumptions. In this paper, we combine the two approaches to achieve the best of both worlds. We consider a dynamical system with both linear and non-linear components and develop a novel approach to use the linear model to define a warm start for a model-free, policy gradient method. We show this hybrid approach outperforms the model-based controller while avoiding the convergence issues associated with model-free approaches via both numerical experiments and theoretical analyses, in which we derive sufficient conditions on the non-linear component such that our approach is guaranteed to converge to the (nearly) global optimal controller.
173 - Xiuxian Li , Kuo-Yi Lin , Li Li 2021
Communication has been seen as a significant bottleneck in industrial applications over large-scale networks. To alleviate the communication burden, sign-based optimization algorithms have gained popularity recently in both industrial and academic communities, which is shown to be closely related to adaptive gradient methods, such as Adam. Along this line, this paper investigates faster convergence for a variant of sign-based gradient descent, called scaled signGD, in three cases: 1) the objective function is strongly convex; 2) the objective function is nonconvex but satisfies the Polyak-Lojasiewicz (PL) inequality; 3) the gradient is stochastic, called scaled signGD in this case. For the first two cases, it can be shown that the scaled signGD converges at a linear rate. For case 3), the algorithm is shown to converge linearly to a neighborhood of the optimal value when a constant learning rate is employed, and the algorithm converges at a rate of $O(1/k)$ when using a diminishing learning rate, where $k$ is the iteration number. The results are also extended to the distributed setting by majority vote in a parameter-server framework. Finally, numerical experiments on logistic regression are performed to corroborate the theoretical findings.
In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication (NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا