Production of secondary particles in heavy nuclei interactions in supernova remnants


Abstract in English

Depending on their type, supernova remnants may have ejecta material with high abundance of heavy elements such as carbon or oxygen. In addition, core-collapse supernovae explode in the wind material of their progenitor star that may also have a high abundance of heavy elements. Hadronic collisions in these enriched media spawn the production of gamma rays, neutrinos, and secondary electrons with spectra that cannot be scaled from those calculated for pp collisions, potentially leading to erroneous results. We used Monte-Carlo event generators to calculate the differential production rate of particles such as gamma rays, neutrinos, and secondary electrons for H, He, C, and O nuclei as projectiles and as target material. The cross sections and the multiplicity spectra are separately computed for each of the 16 combinations of projectile and target. We describe characteristic effects of heavy nuclei in the shape and normalization of the spectra of various particles produced.

Download