No Arabic abstract
Human settlements on Earth are scattered in a multitude of shapes, sizes and spatial arrangements. These patterns are often not random but a result of complex geographical, cultural, economic and historical processes that have profound human and ecological impacts. However, little is known about the global distribution of these patterns and the spatial forces that creates them. This study analyses human settlements from high-resolution satellite imagery and provides a global classification of spatial patterns. We find two emerging classes, namely agglomeration and dispersion. In the former, settlements are fewer than expected based on the predictions of scaling theory, while an unexpectedly high number of settlements characterizes the latter. Our global classification of spatial patterns correlates with some urban outcomes, such as the amount of CO2 emitted for transportation, providing insights into the relationship between land use patterns and socio-economic and environmental indicators. To explain the observed spatial patterns, we also propose a model that combines two agglomeration forces and simulates human settlements historical growth. Our results show that our model accurately matches the observed global classification (F1: 0.73), helps to understand and estimate the growth of human settlements and, in turn, the distribution and physical dynamics of all human settlements on Earth, from small villages to cities.
The shape of urban settlements plays a fundamental role in their sustainable planning. Properly defining the boundaries of cities is challenging and remains an open problem in the Science of Cities. Here, we propose a worldwide model to define urban settlements beyond their administrative boundaries through a bottom-up approach that takes into account geographical biases intrinsically associated with most societies around the world, and reflected in their different regional growing dynamics. The generality of the model allows to study the scaling laws of cities at all geographical levels: countries, continents, and the entire world. Our definition of cities is robust and holds to one of the most famous results in Social Sciences: Zipfs law. According to our results, the largest cities in the world are not in line with what was recently reported by the United Nations. For example, we find that the largest city in the world is an agglomeration of several small settlements close to each other, connecting three large settlements: Alexandria, Cairo, and Luxor. Our definition of cities opens the doors to the study of the economy of cities in a systematic way independently of arbitrary definitions that employ administrative boundaries.
How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides direct access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries. Across languages carefully selected from a phylogenetically and geographically stratified sample of genera, translations of words reveal cases where a particular language uses a single polysemous word to express concepts represented by distinct words in another. We use the frequency of polysemies linking two concepts as a measure of their semantic proximity, and represent the pattern of such linkages by a weighted network. This network is highly uneven and fragmented: certain concepts are far more prone to polysemy than others, and there emerge naturally interpretable clusters loosely connected to each other. Statistical analysis shows such structural properties are consistent across different language groups, largely independent of geography, environment, and literacy. It is therefore possible to conclude the conceptual structure connecting basic vocabulary studied is primarily due to universal features of human cognition and language use.
Human mobility is becoming an accessible field of study thanks to the progress and availability of tracking technologies as a common feature of smart phones. We describe an example of a scalable experiment exploiting these circumstances at a public, outdoor fair in Barcelona (Spain). Participants were tracked while wandering through an open space with activity stands attracting their attention. We develop a general modeling framework based on Langevin Dynamics, which allows us to test the influence of two distinct types of ingredients on mobility: reactive or context-dependent factors, modelled by means of a force field generated by attraction points in a given spatial configuration, and active or inherent factors, modelled from intrinsic movement patterns of the subjects. The additive and constructive framework model accounts for the observed features. Starting with the simplest model (purely random walkers) as a reference, we progressively introduce different ingredients such as persistence, memory, and perceptual landscape, aiming to untangle active and reactive contributions and quantify their respective relevance. The proposed approach may help in anticipating the spatial distribution of citizens in alternative scenarios and in improving the design of public events based on a facts-based approach.
A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of this process generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedias editing records to tackle this question by measuring the level of burstiness, as well as the memory effect of the editing tasks performed by different editors in different pages. Our main finding is that, even though the editing activity is conditioned by the circadian 24 hour cycle, the conditional probability of an activity of a given duration at a given time of the day is independent from the latter. This suggests that the human activity seems to be related to the high cost of starting an action as opposed to the much lower cost of continuing that action.
There is a contradiction at the heart of our current understanding of individual and collective mobility patterns. On one hand, a highly influential stream of literature on human mobility driven by analyses of massive empirical datasets finds that human movements show no evidence of characteristic spatial scales. There, human mobility is described as scale-free. On the other hand, in geography, the concept of scale, referring to meaningful levels of description from individual buildings through neighborhoods, cities, regions, and countries, is central for the description of various aspects of human behavior such as socio-economic interactions, or political and cultural dynamics. Here, we resolve this apparent paradox by showing that day-to-day human mobility does indeed contain meaningful scales, corresponding to spatial containers restricting mobility behavior. The scale-free results arise from aggregating displacements across containers. We present a simple model, which given a persons trajectory, infers their neighborhoods, cities, and so on, as well as the sizes of these geographical containers. We find that the containers characterizing the trajectories of more than 700,000 individuals do indeed have typical sizes. We show that our model generates highly realistic trajectories without overfitting and provides a new lens through which to understand the differences in mobility behaviour across countries, gender groups, and urban-rural areas.