Do you want to publish a course? Click here

Improved Design of Quadratic Discriminant Analysis Classifier in Unbalanced Settings

190   0   0.0 ( 0 )
 Added by Amine Bejaoui
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The use of quadratic discriminant analysis (QDA) or its regularized version (R-QDA) for classification is often not recommended, due to its well-acknowledged high sensitivity to the estimation noise of the covariance matrix. This becomes all the more the case in unbalanced data settings for which it has been found that R-QDA becomes equivalent to the classifier that assigns all observations to the same class. In this paper, we propose an improved R-QDA that is based on the use of two regularization parameters and a modified bias, properly chosen to avoid inappropriate behaviors of R-QDA in unbalanced settings and to ensure the best possible classification performance. The design of the proposed classifier builds on a refined asymptotic analysis of its performance when the number of samples and that of features grow large simultaneously, which allows to cope efficiently with the high-dimensionality frequently met within the big data paradigm. The performance of the proposed classifier is assessed on both real and synthetic data sets and was shown to be much better than what one would expect from a traditional R-QDA.

rate research

Read More

Fishers linear discriminant analysis is a classical method for classification, yet it is limited to capturing linear features only. Kernel discriminant analysis as an extension is known to successfully alleviate the limitation through a nonlinear feature mapping. We study the geometry of nonlinear embeddings in discriminant analysis with polynomial kernels and Gaussian kernel by identifying the population-level discriminant function that depends on the data distribution and the kernel. In order to obtain the discriminant function, we solve a generalized eigenvalue problem with between-class and within-class covariance operators. The polynomial discriminants are shown to capture the class difference through the population moments explicitly. For approximation of the Gaussian discriminant, we use a particular representation of the Gaussian kernel by utilizing the exponential generating function for Hermite polynomials. We also show that the Gaussian discriminant can be approximated using randomized projections of the data. Our results illuminate how the data distribution and the kernel interact in determination of the nonlinear embedding for discrimination, and provide a guideline for choice of the kernel and its parameters.
130 - Xiaoyun Li , Jie Gui , Ping Li 2020
In many artificial intelligence and computer vision systems, the same object can be observed at distinct viewpoints or by diverse sensors, which raises the challenges for recognizing objects from different, even heterogeneous views. Multi-view discriminant analysis (MvDA) is an effective multi-view subspace learning method, which finds a discriminant common subspace by jointly learning multiple view-specific linear projections for object recognition from multiple views, in a non-pairwise way. In this paper, we propose the kernel version of multi-view discriminant analysis, called kernel multi-view discriminant analysis (KMvDA). To overcome the well-known computational bottleneck of kernel methods, we also study the performance of using random Fourier features (RFF) to approximate Gaussian kernels in KMvDA, for large scale learning. Theoretical analysis on stability of this approximation is developed. We also conduct experiments on several popular multi-view datasets to illustrate the effectiveness of our proposed strategy.
118 - Ruiyang Wu , Ning Hao 2021
Discriminant analysis, including linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), is a popular approach to classification problems. It is well known that LDA is suboptimal to analyze heteroscedastic data, for which QDA would be an ideal tool. However, QDA is less helpful when the number of features in a data set is moderate or high, and LDA and its variants often perform better due to their robustness against dimensionality. In this work, we introduce a new dimension reduction and classification method based on QDA. In particular, we define and estimate the optimal one-dimensional (1D) subspace for QDA, which is a novel hybrid approach to discriminant analysis. The new method can handle data heteroscedasticity with number of parameters equal to that of LDA. Therefore, it is more stable than the standard QDA and works well for data in moderate dimensions. We show an estimation consistency property of our method, and compare it with LDA, QDA, regularized discriminant analysis (RDA) and a few other competitors by simulated and real data examples.
We introduce a new method of performing high dimensional discriminant analysis, which we call multiDA. We achieve this by constructing a hybrid model that seamlessly integrates a multiclass diagonal discriminant analysis model and feature selection components. Our feature selection component naturally simplifies to weights which are simple functions of likelihood ratio statistics allowing natural comparisons with traditional hypothesis testing methods. We provide heuristic arguments suggesting desirable asymptotic properties of our algorithm with regards to feature selection. We compare our method with several other approaches, showing marked improvements in regard to prediction accuracy, interpretability of chosen features, and algorithm run time. We demonstrate such strengths of our model by showing strong classification performance on publicly available high dimensional datasets, as well as through multiple simulation studies. We make an R package available implementing our approach.
We develop a novel method for training of GANs for unsupervised and class conditional generation of images, called Linear Discriminant GAN (LD-GAN). The discriminator of an LD-GAN is trained to maximize the linear separability between distributions of hidden representations of generated and targeted samples, while the generator is updated based on the decision hyper-planes computed by performing LDA over the hidden representations. LD-GAN provides a concrete metric of separation capacity for the discriminator, and we experimentally show that it is possible to stabilize the training of LD-GAN simply by calibrating the update frequencies between generators and discriminators in the unsupervised case, without employment of normalization methods and constraints on weights. In the class conditional generation tasks, the proposed method shows improved training stability together with better generalization performance compared to WGAN that employs an auxiliary classifier.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا