Do you want to publish a course? Click here

Little-Parks Effect Governed by Magnetic Nanostructures with Out-of-Plane Magnetization Little-Parks Effect Governed by Magnetic Nanostructures with Out-of-Plane Magnetization

121   0   0.0 ( 0 )
 Added by Elvira M. Gonzalez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Little-Parks effect names the oscillations in the superconducting critical temperature as a function of the magnetic field. This effect is related to the geometry of the sample. In this work, we show that this effect can be enhanced and manipulated by the inclusion of magnetic nanostructures with perpendicular magnetization. These magnetic nanodots generate stray fields with enough strength to produce superconducting vortex-antivortex pairs. So that, the L-P effect deviation from the usual geometrical constrictions is due to the interplay between local magnetic stray fields and superconducting vortices. Moreover, we compare our results with a low-stray field sample (i.e. with the dots in magnetic vortex state) showing how the enhancement of the L-P effect can be explained by an increment of the effective size of the nanodots.



rate research

Read More

In superconductors, the condensation of Cooper pairs gives rise to fluxoid quantization in discrete units of $Phi_0 = hc / 2e$. The denominator of $2e$ is the signature of electron pairing, which is evidenced by a number of macroscopic quantum phenomena, such as the Little-Parks effect and the Josephson effect, where the critical temperature or the critical current oscillates in the period of $Phi_0$. Here we report the observation of fractional Little-Parks effect in mesoscopic rings of epitaxial $beta$-Bi$_2$Pd, a topological superconductor. Besides $Phi_0$, novel Little-Parks oscillation periodicities of $2Phi_0$, $3Phi_0$ and $4Phi_0$ are also observed, implying quasiparticles with effective charges being a fraction of a Cooper pair. We show that the fractional Little-Parks effect may be closely related to the fractional Josephson effect, which is a key signature of chiral Majorana edge states.
Within the phenomenological Ginzburg-Landau theory we investigate the phase diagram of a thin superconducting film with ferromagnetic nanoparticles. We study the oscillatory dependence of the critical temperature on an external magnetic field similar to the Little-Parks effect and formation of multiquantum vortex structures. The structure of a superconducting state is studied both analytically and numerically.
62 - Florian R. Ong 2006
We present the first measurements of thermal signatures of the Little-Parks effect using a highly sensitive nanocalorimeter. Small variations of the heat capacity $C_p$ of 2.5 millions of non interacting micrometer-sized superconducting rings threaded by a magnetic flux $Phi$ have been measured by attojoule calorimetry. This non-invasive method allows the measurement of thermodynamic properties -- and hence the probing of the energy levels -- of nanosystems without perturbing them electrically. It is observed that $C_p$ is strongly influenced by the fluxoid quantization (Little-Parks effect) near the critical temperature $T_c$. The jump of $C_p$ at the superconducting phase transition is an oscillating function of $Phi$ with a period $Phi_0=h/2e$, the magnetic flux quantum, which is in agreement with the Ginzburg-Landau theory of superconductivity.
A semiconductor transmon with an epitaxial Al shell fully surrounding an InAs nanowire core is investigated in the low $E_J/E_C$ regime. Little-Parks oscillations as a function of flux along the hybrid wire axis are destructive, creating lobes of reentrant superconductivity separated by a metallic state at a half-quantum of applied flux. In the first lobe, phase winding around the shell can induce topological superconductivity in the core. Coherent qubit operation is observed in both the zeroth and first lobes. Splitting of parity bands by coherent single-electron coupling across the junction is not resolved beyond line broadening, placing a bound on Majorana coupling, $E_M/h$ < 10 MHz, much smaller than the Josephson coupling $E_J/h$ ~ 4.7 GHz.
We present results of measurements obtained from a mesoscopic ring of a highly disordered superconductor. Superimposed on a smooth magnetoresistance background we find periodic oscillations with a period that is independent of the strength of the magnetic field. The period of the oscillations is consistent with charge transport by Cooper pairs. The oscillations persist unabated for more than 90 periods, through the transition to the insulating phase, up to our highest field of 12 T.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا