No Arabic abstract
A major obstacle to interpreting the rotation period distribution for main-sequence stars from Kepler mission data has been the lack of precise evolutionary status for these objects. We address this by investigating the evolutionary status based on Gaia Data Release 2 parallaxes and photometry for more than 30,000 Kepler stars with rotation period measurements. Many of these are subgiants, and should be excluded in future work on dwarfs. We particularly investigate a 193-star sample of solar analogs, and report newly-determined rotation periods for 125 of these. These include 54 stars from a prior sample, of which can confirm the periods for 50. The remainder are new, and 10 of them longer than solar rotation period, suggesting that sun-like stars continue to spin down on the main sequence past solar age. Our sample of solar analogs could potentially serve as a benchmark for future missions such as PLATO, and emphasizes the need for additional astrometric, photometric, and spectroscopic information before interpreting the stellar populations and results from time-series surveys.
The evolved solar-type stars 16 Cyg A & B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components respectively, including a clear detection of octupole (l=3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t=6.8+/-0.4 Gyr) and initial composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.
Magnetic activity on stars manifests itself in the form of dark spots on the stellar surface, that cause modulation of a few percent in the light curve of the star as it rotates. When a planet eclipses its host star, it might cross in front of one of these spots creating a bump in the transit light curve. By modelling these spot signatures, it is possible to determine the physical properties of the spots such as size, temperature, and location. In turn, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. This technique was applied to the star Kepler-17, a solar--type star orbited by a hot Jupiter. The model yields the following spot characteristics: average radius of $49 pm 10$ Mm, temperatures of $5100 pm 300$ K, and surface area coverage of $6 pm 4$ %. The rotation period at the transit latitude, $-5^circ$, occulted by the planet was found to be $11.92 pm 0.05$ d, slightly smaller than the out--of--transit average period of $12.4 pm 0.1$ d. Adopting a solar like differential rotation, we estimated the differential rotation of Kepler-17 to be $DeltaOmega = 0.041 pm 0.005$ rd/d, which is close to the solar value of 0.050 rd/d, and a relative differential rotation of $DeltaOmega/Omega=8.0 pm 0.9$ %. Since Kepler-17 is much more active than our Sun, it appears that for this star larger rotation rate is more effective in the generation of magnetic fields than shear.
We present a Bayesian method to cross-match 5,827,988 high proper motion Gaia sources ($mu>40 mas yr^{-1}$) to various photometric surveys: 2MASS, AllWISE, GALEX, RAVE, SDSS and Pan-STARRS. To efficiently associate these objects across catalogs, we develop a technique that compares the multidimensional distribution of all sources in the vicinity of each Gaia star to a reference distribution of random field stars obtained by extracting all sources in a region on the sky displaced 2$^prime$. This offset preserves the local field stellar density and magnitude distribution allowing us to characterize the frequency of chance alignments. The resulting catalog with Bayesian probabilities $>$95% has a marginally higher match rate than current internal Gaia DR2 matches for most catalogs. However, a significant improvement is found with Pan-STARRS, where $sim$99.8% of the sample within the Pan-STARRS footprint is recovered, as compared to a low $sim$20.8% in Gaia DR2. Using these results, we train a Gaussian Process Regressor to calibrate two photometric metallicity relationships. For dwarfs of $3500<T_{eff}<5280$ K, we use metallicity values of 4,378 stars from APOGEE and Hejazi et al. (2020) to calibrate the relationship, producing results with a $1sigma$ precision of 0.12 dex and few systematic errors. We then indirectly infer the metallicity of 4,018 stars with $2850<T_{eff}<3500$ K, that are wide companions of primaries whose metallicities are estimated with our first regressor, to produce a relationship with a $1sigma$ precision of 0.21 dex and significant systematic errors. Additional work is needed to better remove unresolved binaries from this sample to reduce these systematic errors.
Over 54 years of hourly mean value of solar wind velocity from 27 Nov. 1963 to 31 Dec. 2017 are used to investigate characteristics of the rotation period of solar wind through auto-correlation analysis. Solar wind of high velocity is found to rotate faster than low-velocity wind, while its rotation rate increases with velocity increasing, but in contrast for solar wind of low velocity, its rotation rate decreases with velocity increasing. Our analysis shows that solar wind of a higher velocity statistically possesses a faster rotation rate for the entire solar wind. The yearly rotation rate of solar wind velocity does not follow the Schwable cycle, but it is significantly negatively correlated to yearly sunspot number when it leads by 3 years. Physical explanations are proposed to these findings.
We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc from the Sun. By smoothing the star distribution through a gaussian filter, we construct three dimensional density maps for early-type stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS and the UMS samples are selected through a combination of photometric and astrometric criteria. A side product of the analysis is a three dimensional, G-band extinction map, which we use to correct our colour-magnitude diagram for extinction and reddening. Both density maps show three prominent structures, Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and Lacerta, which are less visible in the UMS map, due to the lack of large numbers of bright, early-type stars. We report the finding of a candidate new open cluster towards $l, b sim 218.5^{circ}, -2^{circ}$, which could be related to the Orion star forming complex. We estimate ages for the PMS sample and we study the distribution of PMS stars as a function of their age. We find that younger stars cluster in dense, compact clumps, and are surrounded by older sources, whose distribution is instead more diffuse. The youngest groups that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus. Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous. Finally, we find that the three dimensional density maps show no evidence for the existence of the ring-like structure which is usually referred to as the Gould Belt.