Do you want to publish a course? Click here

Exploration by Maximizing Renyi Entropy for Reward-Free RL Framework

109   0   0.0 ( 0 )
 Added by Chuheng Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Exploration is essential for reinforcement learning (RL). To face the challenges of exploration, we consider a reward-free RL framework that completely separates exploration from exploitation and brings new challenges for exploration algorithms. In the exploration phase, the agent learns an exploratory policy by interacting with a reward-free environment and collects a dataset of transitions by executing the policy. In the planning phase, the agent computes a good policy for any reward function based on the dataset without further interacting with the environment. This framework is suitable for the meta RL setting where there are many reward functions of interest. In the exploration phase, we propose to maximize the Renyi entropy over the state-action space and justify this objective theoretically. The success of using Renyi entropy as the objective results from its encouragement to explore the hard-to-reach state-actions. We further deduce a policy gradient formulation for this objective and design a practical exploration algorithm that can deal with complex environments. In the planning phase, we solve for good policies given arbitrary reward functions using a batch RL algorithm. Empirically, we show that our exploration algorithm is effective and sample efficient, and results in superior policies for arbitrary reward functions in the planning phase.



rate research

Read More

Reward-free exploration is a reinforcement learning setting studied by Jin et al. (2020), who address it by running several algorithms with regret guarantees in parallel. In our work, we instead give a more natural adaptive approach for reward-free exploration which directly reduces upper bounds on the maximum MDP estimation error. We show that, interestingly, our reward-free UCRL algorithm can be seen as a variant of an algorithm of Fiechter from 1994, originally proposed for a different objective that we call best-policy identification. We prove that RF-UCRL needs of order $({SAH^4}/{varepsilon^2})(log(1/delta) + S)$ episodes to output, with probability $1-delta$, an $varepsilon$-approximation of the optimal policy for any reward function. This bound improves over existing sample-complexity bounds in both the small $varepsilon$ and the small $delta$ regimes. We further investigate the relative complexities of reward-free exploration and best-policy identification.
Inspired by the Reward-Biased Maximum Likelihood Estimate method of adaptive control, we propose RBMLE -- a novel family of learning algorithms for stochastic multi-armed bandits (SMABs). For a broad range of SMABs including both the parametric Exponential Family as well as the non-parametric sub-Gaussian/Exponential family, we show that RBMLE yields an index policy. To choose the bias-growth rate $alpha(t)$ in RBMLE, we reveal the nontrivial interplay between $alpha(t)$ and the regret bound that generally applies in both the Exponential Family as well as the sub-Gaussian/Exponential family bandits. To quantify the finite-time performance, we prove that RBMLE attains order-optimality by adaptively estimating the unknown constants in the expression of $alpha(t)$ for Gaussian and sub-Gaussian bandits. Extensive experiments demonstrate that the proposed RBMLE achieves empirical regret performance competitive with the state-of-the-art methods, while being more computationally efficient and scalable in comparison to the best-performing ones among them.
We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drifted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, $varepsilon$-Greedy, and Thompson Sampling. Our results show that they all achieve $mathcal{O}(log T)$ regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.
We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world domains including digital marketing, healthcare, production, finance, etc. For multi-armed bandits, linear bandits and tabular RL, specialized algorithms and theoretical analyses were proposed in previous work. In this paper, we present a unified framework for conservative bandits and RL, in which our core technique is to calculate the necessary and sufficient budget obtained from running the baseline policy. For lower bounds, our framework gives a black-box reduction that turns a certain lower bound in the nonconservative setting into a new lower bound in the conservative setting. We strengthen the existing lower bound for conservative multi-armed bandits and obtain new lower bounds for conservative linear bandits, tabular RL and low-rank MDP. For upper bounds, our framework turns a certain nonconservative upper-confidence-bound (UCB) algorithm into a conservative algorithm with a simple analysis. For multi-armed bandits, linear bandits and tabular RL, our new upper bounds tighten or match existing ones with significantly simpler analyses. We also obtain a new upper bound for conservative low-rank MDP.
We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a sufficiently high probability. We call our algorithm Giro, which stands for garbage in, reward out. We analyze Giro in a Bernoulli bandit and derive a $O(K Delta^{-1} log n)$ bound on its $n$-round regret, where $Delta$ is the difference in the expected rewards of the optimal and the best suboptimal arms, and $K$ is the number of arms. The main advantage of our exploration design is that it easily generalizes to structured problems. To show this, we propose contextual Giro with an arbitrary reward generalization model. We evaluate Giro and its contextual variant on multiple synthetic and real-world problems, and observe that it performs well.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا