Privacy-Cost Management in Smart Meters: An Information-Theoretic Deep Reinforcement Learning Approach


Abstract in English

Smart meters (SMs) share fine-grained electricity consumption of households with utility providers almost in real-time. This can violate the users privacy since sensitive information is leaked through the SMs data. In this study, a novel privacy-aware method which exploits the availability of a rechargeable battery (RB) is proposed. It is based on a Markov decision process (MDP) formulation in which the reward received by the agent is designed to control the trade-off between privacy and electricity cost. To obtain a robust and general privacy measure, we adopt the mutual information (MI) between the users demand load and the masked load seen by the grid. Unlike previous studies, we model the whole temporal correlation in the data to estimate the MI in its general form. The training of the agent is done using a model-free deep reinforcement learning algorithm known as the deep double Q-learning (DDQL) method. In order to estimate the MI-based privacy signal, a neural network termed the H-network is included in the scheme. The performance of the DDQL-MI algorithm is assessed empirically using actual SMs data and compared with simpler privacy measures. The results show significant improvements over the state-of-the-art privacy-aware SMs methods.

Download