No Arabic abstract
Smart grids are large and complex cyber physical infrastructures that require real-time monitoring for ensuring the security and reliability of the system. Monitoring the smart grid involves analyzing continuous data-stream from various measurement devices deployed throughout the system, which are topologically distributed and structurally interrelated. In this paper, graph signal processing (GSP) has been used to represent and analyze the power grid measurement data. It is shown that GSP can enable various analyses for the power grids structured data and dynamics of its interconnected components. Particularly, the effects of various cyber and physical stresses in the power grid are evaluated and discussed both in the vertex and the graph-frequency domains of the signals. Several techniques for detecting and locating cyber and physical stresses based on GSP techniques have been presented and their performances have been evaluated and compared. The presented study shows that GSP can be a promising approach for analyzing the power grids data.
In the field of graph signal processing (GSP), directed graphs present a particular challenge for the standard approaches of GSP to due to their asymmetric nature. The presence of negative- or complex-weight directed edges, a graphical structure used in fields such as neuroscience, critical infrastructure, and robot coordination, further complicates the issue. Recent results generalized the total variation of a graph signal to that of directed variation as a motivating principle for developing a graphical Fourier transform (GFT). Here, we extend these techniques to concepts of signal variation appropriate for indefinite and complex-valued graphs and use them to define a GFT for these classes of graph. Simulation results on random graphs are presented, as well as a case study of a portion of the fruit fly connectome.
Deep learning, particularly convolutional neural networks (CNNs), have yielded rapid, significant improvements in computer vision and related domains. But conventional deep learning architectures perform poorly when data have an underlying graph structure, as in social, biological, and many other domains. This paper explores 1)how graph signal processing (GSP) can be used to extend CNN components to graphs in order to improve model performance; and 2)how to design the graph CNN architecture based on the topology or structure of the data graph.
The behavior of a cyber-physical system (CPS) is usually defined in terms of the input and output signals processed by sensors and actuators. Requirements specifications of CPSs are typically expressed using signal-based temporal properties. Expressing such requirements is challenging, because of (1) the many features that can be used to characterize a signal behavior; (2) the broad variation in expressiveness of the specification languages (i.e., temporal logics) used for defining signal-based temporal properties. Thus, system and software engineers need effective guidance on selecting appropriate signal behavior types and an adequate specification language, based on the type of requirements they have to define. In this paper, we present a taxonomy of the various types of signal-based properties and provide, for each type, a comprehensive and detailed description as well as a formalization in a temporal logic. Furthermore, we review the expressiveness of state-of-the-art signal-based temporal logics in terms of the property types identified in the taxonomy. Moreover, we report on the application of our taxonomy to classify the requirements specifications of an industrial case study in the aerospace domain, in order to assess the feasibility of using the property types included in our taxonomy and the completeness of the latter.
The conventional approach to pre-process data for compression is to apply transforms such as the Fourier, the Karhunen-Lo`{e}ve, or wavelet transforms. One drawback from adopting such an approach is that it is independent of the use of the compressed data, which may induce significant optimality losses when measured in terms of final utility (instead of being measured in terms of distortion). We therefore revisit this paradigm by tayloring the data pre-processing operation to the utility function of the decision-making entity using the compressed (and therefore noisy) data. More specifically, the utility function consists of an Lp-norm, which is very relevant in the area of smart grids. Both a linear and a non-linear use-oriented transforms are designed and compared with conventional data pre-processing techniques, showing that the impact of compression noise can be significantly reduced.
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation.