Adaptive Reinforcement Learning through Evolving Self-Modifying Neural Networks


Abstract in English

The adaptive learning capabilities seen in biological neural networks are largely a product of the self-modifying behavior emerging from online plastic changes in synaptic connectivity. Current methods in Reinforcement Learning (RL) only adjust to new interactions after reflection over a specified time interval, preventing the emergence of online adaptivity. Recent work addressing this by endowing artificial neural networks with neuromodulated plasticity have been shown to improve performance on simple RL tasks trained using backpropagation, but have yet to scale up to larger problems. Here we study the problem of meta-learning in a challenging quadruped domain, where each leg of the quadruped has a chance of becoming unusable, requiring the agent to adapt by continuing locomotion with the remaining limbs. Results demonstrate that agents evolved using self-modifying plastic networks are more capable of adapting to complex meta-learning learning tasks, even outperforming the same network updated using gradient-based algorithms while taking less time to train.

Download