No Arabic abstract
Nodal chain is a typical topological phase in nodal line semimetals. Here, we propose a new topological phase -- interlocking nodal chains, in which two sets of nodal chains are interlocked each other. It includes one- (1D), two- (2D) and three-dimensional (3
Three-dimensional (3D) topological nodal points, such as Weyl and Dirac nodes have attracted wide-spread interest across multiple disciplines and diverse material systems. Unlike nodal points that contain little structural variations, nodal lines can have numerous topological configurations in the momentum space, forming nodal rings, nodal chains and potentially nodal links and nodal knots. However, nodal lines have much less development for the lack of ideal material platforms. In condensed matter for example, nodal lines are often fragile to spin-orbit-coupling, locating off the Fermi level, coexisting with energy-degenerate trivial bands and dispersing strongly in energy of the line degeneracy. Here, overcoming all above difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear bandtouching rings chained across the entire Brillouin zone (BZ). These nodal chains are protected by mirror symmetries and have a frequency variation less than 1%. We used angle-resolved transmission (ART) to probe the projected bulk dispersions and performed Fourier-transformed field scan (FTFS) to map out the surface dispersions, which is a quadratic touching between two drumhead surface bands. Our results established an ideal nodal-line material for further studies of topological line-degeneracies with nontrivial connectivities, as well as the consequent wave dynamics richer than 2D Dirac and 3D Weyl materials.
We study two coupled Su-Schrieffer-Heeger (SSH) chains system, which is shown to contain rich quantum phases associated with topological invariants protected by symmetries. In the weak coupling region, the system supports two non-trivial topological insulating phases, characterized by winding number N = +1 or -1, and two types of edge states. The boundary between the two topological phases arises from two band closing points, which exhibit topological characteristics in one-dimensional k space. By mapping Bloch states on a vector field in k space, the band degenerate points correspond to a pair of kinks of the field, with opposite topological charges. Two topological nodal points move and merge as the inter-chain coupling strength varies. This topological invariant is protected by the translational and inversion symmetries, rather than the antiunitary operation. Furthermore, we find that when a pair of nodal points is created, a second order quantum phase transition (QPT) occurs, associating with a gap closing and spontaneously symmetry breaking. This simple model demonstrates several central concepts in the field of quantum materials and provides a theoretical connection between them.
Three typical one-dimensional (1D)/quasi-1D nanocarbons, linear carbon chains, carbon nanotubes, and graphene nanoribbons have been proven to grow inside single-wall carbon nanotubes. This gives rise to three types of hybrid materials whose behaviour and properties compared among each other are far from understood. After proving successful the synthesis of these nanostructured materials in recently published work, we have now been able to study their oxidation stability systematically by using resonance Raman spectroscopy. Surprisingly, the linear carbon chains, which have been theoretically predicted to be very unstable, are actually thermally stable up to 500 {deg}C assisted by the protection of the carbon nanotube hosts. Besides, longer linear carbon chains inside narrower CNTs are more stable than the shorter ones inside larger tubes, suggesting that the thermal stability not only depends on the length of linear carbon chains alone, but it is correlated with the confinement of the host tubes in a more complicated manner. In addition, graphene nanoribbons come overall in view as the most stable confined structures. On the other hand, peculiarities like the higher stability of the (6,5) CNT over its (6,4) counterpart allow this study to provide a solid platform for further studies on the application of these 1D nanocarbons (including true 1D linear carbon chains) at ambient conditions.
Linear carbon chains (LCCs) have been shown to grow inside double-walled carbon nanotubes (DWCNTs) but isolating them from this hosting material represents one of the most challenging tasks towards applications. Herein we report the extraction and separation of LCCs inside single-wall carbon nanotubes (LCCs@SWCNTs) extracted from a double walled host LCCs@DWCNTs by applying a combined tip-ultrasonic and density gradient ultracentrifugation (DGU) process. High-resolution transmission electron microscopy (HRTEM), optical absorption, and Raman spectroscopy show that not only short LCCs but clearly long LCCs (LLCCs) can be extracted and separated from the host. Moreover, the LLCCs can even be condensed by DGU. The Raman spectral frequency of LCCs remains almost unchanged regardless of the presence of the outer tube of the DWCNTs. This suggests that the major importance of the outer tubes is making the whole synthesis viable. We have also been able to observe the interaction between the LCCs and the inner tubes of DWCNTs, playing a major role in modifying the optical properties of LCCs. Our extraction method suggests the possibility towards the complete isolation of LCCs from CNTs.
We show that separating metallic from semiconducting carbon nanotubes by dielectrophoresis is developing towards a bulk separation method, which allows for the first time to produce thin films of only metallic single-walled carbon nanotubes and to measure their optical absorption spectra. The data proofs that the selectivity of the separation scheme is independent from the nanotube diameter.