No Arabic abstract
Sharp two- and three-dimensional phase transitional magnetization curves are obtained by an iterative renormalization-group coupling of Ising chains, which are solved exactly. The chains by themselves do not have a phase transition or non-zero magnetization, but the method reflects crossover from temperature-like to field-like renormalization-group flows as the mechanism for the higher-dimensional phase transitions. The magnetization of each chain acts, via the interaction constant, as a magnetic field on its neighboring chains, thus entering its renormalization-group calculation. The method is highly flexible for wide application.
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.
We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest.
We derive an extended lattice gauge theory type action for quantum dimer models and relate it to the height representations of these systems. We examine the system in two and three dimensions and analyze the phase structure in terms of effective theories and duality arguments. For the two-dimensional case we derive the effective potential both at zero and finite temperature. The zero-temperature theory at the Rokhsar-Kivelson (RK) point has a critical point related to the self-dual point of a class of $Z_N$ models in the $Ntoinfty$ limit. Two phase transitions featuring a fixed line are shown to appear in the phase diagram, one at zero temperature and at the RK point and another one at finite temperature above the RK point. The latter will be shown to correspond to a Kosterlitz-Thouless (KT) phase transition, while the former will be governed by a KT-like universality class, i.e., sharing many features with a KT transition but actually corresponding to a different universality class. On the other hand, we show that at the RK point no phase transition happens at finite temperature. For the three-dimensional case we derive the corresponding dual gauge theory model at the RK point. We show in this case that at zero temperature a first-order phase transition occurs, while at finite temperatures both first- and second-order phase transitions are possible, depending on the relative values of the couplings involved.
We consider the phase diagram of self-avoiding walks (SAW) on the simple cubic lattice subject to surface and bulk interactions, modeling an adsorbing surface and variable solvent quality for a polymer in dilute solution, respectively. We simulate SAWs at specific interaction strengths to focus on locating certain transitions and their critical behavior. By collating these new results with previous results we sketch the complete phase diagram and show how the adsorption transition is affected by changing the bulk interaction strength. This expands on recent work considering how adsorption is affected by solvent quality. We demonstrate that changes in the adsorption crossover exponent coincide with phase boundaries.
The continuous ferromagnetic-paramagnetic phase transition in the two-dimensional Ising model has already been excessively studied by conventional canonical statistical analysis in the past. We use the recently developed generalized microcanonical inflection-point analysis method to investigate the least-sensitive inflection points of the microcanonical entropy and its derivatives to identify transition signals. Surprisingly, this method reveals that there are potentially two additional transitions for the Ising system besides the critical transition.