Do you want to publish a course? Click here

Adversarial Attacks on Brain-Inspired Hyperdimensional Computing-Based Classifiers

85   0   0.0 ( 0 )
 Added by Shaolei Ren
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Being an emerging class of in-memory computing architecture, brain-inspired hyperdimensional computing (HDC) mimics brain cognition and leverages random hypervectors (i.e., vectors with a dimensionality of thousands or even more) to represent features and to perform classification tasks. The unique hypervector representation enables HDC classifiers to exhibit high energy efficiency, low inference latency and strong robustness against hardware-induced bit errors. Consequently, they have been increasingly recognized as an appealing alternative to or even replacement of traditional deep neural networks (DNNs) for local on device classification, especially on low-power Internet of Things devices. Nonetheless, unlike their DNN counterparts, state-of-the-art designs for HDC classifiers are mostly security-oblivious, casting doubt on their safety and immunity to adversarial inputs. In this paper, we study for the first time adversarial attacks on HDC classifiers and highlight that HDC classifiers can be vulnerable to even minimally-perturbed adversarial samples. Concretely, using handwritten digit classification as an example, we construct a HDC classifier and formulate a grey-box attack problem, where an attackers goal is to mislead the target HDC classifier to produce erroneous prediction labels while keeping the amount of added perturbation noise as little as possible. Then, we propose a modified genetic algorithm to generate adversarial samples within a reasonably small number of queries. Our results show that adversarial images generated by our algorithm can successfully mislead the HDC classifier to produce wrong prediction labels with a high probability (i.e., 78% when the HDC classifier uses a fixed majority rule for decision). Finally, we also present two defense strategies -- adversarial training and retraining-- to strengthen the security of HDC classifiers.



rate research

Read More

186 - Qi-An Fu , Yinpeng Dong , Hang Su 2021
Deep learning models are vulnerable to adversarial examples, which can fool a target classifier by imposing imperceptible perturbations onto natural examples. In this work, we consider the practical and challenging decision-based black-box adversarial setting, where the attacker can only acquire the final classification labels by querying the target model without access to the models details. Under this setting, existing works often rely on heuristics and exhibit unsatisfactory performance. To better understand the rationality of these heuristics and the limitations of existing methods, we propose to automatically discover decision-based adversarial attack algorithms. In our approach, we construct a search space using basic mathematical operations as building blocks and develop a random search algorithm to efficiently explore this space by incorporating several pruning techniques and intuitive priors inspired by program synthesis works. Although we use a small and fast model to efficiently evaluate attack algorithms during the search, extensive experiments demonstrate that the discovered algorithms are simple yet query-efficient when transferred to larger normal and defensive models on the CIFAR-10 and ImageNet datasets. They achieve comparable or better performance than the state-of-the-art decision-based attack methods consistently.
We address the challenge of designing optimal adversarial noise algorithms for settings where a learner has access to multiple classifiers. We demonstrate how this problem can be framed as finding strategies at equilibrium in a two-player, zero-sum game between a learner and an adversary. In doing so, we illustrate the need for randomization in adversarial attacks. In order to compute Nash equilibrium, our main technical focus is on the design of best response oracles that can then be implemented within a Multiplicative Weights Update framework to boost deterministic perturbations against a set of models into optimal mixed strategies. We demonstrate the practical effectiveness of our approach on a series of image classification tasks using both linear classifiers and deep neural networks.
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied $k$-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result show Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for $k<5$ -- extending previous analysis of the $k$-secretary problem. We also introduce the textit{stochastic $k$-secretary} -- effectively reducing online blackbox transfer attacks to a $k$-secretary problem under noise -- and prove theoretical bounds on the performance of textit{any} online algorithms adapted to this setting. Finally, we complement our theoretical results by conducting experiments on both MNIST and CIFAR-10 with both vanilla and robust classifiers, revealing not only the necessity of online algorithms in achieving near-optimal performance but also the rich interplay of a given attack strategy towards online attack selection, enabling simple strategies like FGSM to outperform classically strong whitebox adversaries.
This paper introduces stochastic sparse adversarial attacks (SSAA), simple, fast and purely noise-based targeted and untargeted $L_0$ attacks of neural network classifiers (NNC). SSAA are devised by exploiting a simple small-time expansion idea widely used for Markov processes and offer new examples of $L_0$ attacks whose studies have been limited. They are designed to solve the known scalability issue of the family of Jacobian-based saliency maps attacks to large datasets and they succeed in solving it. Experiments on small and large datasets (CIFAR-10 and ImageNet) illustrate further advantages of SSAA in comparison with the-state-of-the-art methods. For instance, in the untargeted case, our method called Voting Folded Gaussian Attack (VFGA) scales efficiently to ImageNet and achieves a significantly lower $L_0$ score than SparseFool (up to $frac{2}{5}$ lower) while being faster. Moreover, VFGA achieves better $L_0$ scores on ImageNet than Sparse-RS when both attacks are fully successful on a large number of samples. Codes are publicly available through the link https://github.com/SSAA3/stochastic-sparse-adv-attacks
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus far, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا