No Arabic abstract
Recent CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality. However, these methods are limited in the sense that they can be trained only on fully labeled data. Due to various challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data and hence, generalize poorly to real-world images. The use of real-world data in training image deraining networks is relatively less explored in the literature. We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset while generalizing better using unlabeled real-world images. Through extensive experiments and ablations on several challenging datasets (such as Rain800, Rain200H and DDN-SIRR), we show that the proposed method, when trained on limited labeled data, achieves on-par performance with fully-labeled training. Additionally, we demonstrate that using unlabeled real-world images in the proposed GP-based framework results in superior performance as compared to existing methods. Code is available at: https://github.com/rajeevyasarla/Syn2Real
Existing deep convolutional neural networks have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential application, for example in mobile devices. In this paper, we propose a lightweight pyramid of networks (LPNet) for single image deraining. Instead of designing a complex network structures, we use domain-specific knowledge to simplify the learning process. Specifically, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.
Deep learning-based single image deraining (SID) with unpaired information is of immense importance, as relying on paired synthetic data often limits their generality and scalability in real-world applications. However, we noticed that direct employ of unpaired adversarial learning and cycle-consistency constraints in the SID task is insufficient to learn the underlying relationship from rainy input to clean outputs, since the domain knowledge between rainy and rain-free images is asymmetrical. To address such limitation, we develop an effective unpaired SID method which explores mutual properties of the unpaired exemplars by a contrastive learning manner in a GAN framework, named as CDR-GAN. The proposed method mainly consists of two cooperative branches: Bidirectional Translation Branch (BTB) and Contrastive Guidance Branch (CGB). Specifically, BTB takes full advantage of the circulatory architecture of adversarial consistency to exploit latent feature distributions and guide transfer ability between two domains by equipping it with bidirectional mapping. Simultaneously, CGB implicitly constrains the embeddings of different exemplars in rain space by encouraging the similar feature distributions closer while pushing the dissimilar further away, in order to better help rain removal and image restoration. During training, we explore several loss functions to further constrain the proposed CDR-GAN. Extensive experiments show that our method performs favorably against existing unpaired deraining approaches on both synthetic and real-world datasets, even outperforms several fully-supervised or semi-supervised models.
Single-image deraining is rather challenging due to the unknown rain model. Existing methods often make specific assumptions of the rain model, which can hardly cover many diverse circumstances in the real world, making them have to employ complex optimization or progressive refinement. This, however, significantly affects these methods efficiency and effectiveness for many efficiency-critical applications. To fill this gap, in this paper, we regard the single-image deraining as a general image-enhancing problem and originally propose a model-free deraining method, i.e., EfficientDeRain, which is able to process a rainy image within 10~ms (i.e., around 6~ms on average), over 80 times faster than the state-of-the-art method (i.e., RCDNet), while achieving similar de-rain effects. We first propose the novel pixel-wise dilation filtering. In particular, a rainy image is filtered with the pixel-wise kernels estimated from a kernel prediction network, by which suitable multi-scale kernels for each pixel can be efficiently predicted. Then, to eliminate the gap between synthetic and real data, we further propose an effective data augmentation method (i.e., RainMix) that helps to train network for real rainy image handling.We perform comprehensive evaluation on both synthetic and real-world rainy datasets to demonstrate the effectiveness and efficiency of our method. We release the model and code in https://github.com/tsingqguo/efficientderain.git.
Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gated context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance. Code has been made available at https://github.com/cddlyf/GCANet.
Single image rain streaks removal is extremely important since rainy images adversely affect many computer vision systems. Deep learning based methods have found great success in image deraining tasks. In this paper, we propose a novel residual-guide feature fusion network, called ResGuideNet, for single image deraining that progressively predicts highquality reconstruction. Specifically, we propose a cascaded network and adopt residuals generated from shallower blocks to guide deeper blocks. By using this strategy, we can obtain a coarse to fine estimation of negative residual as the blocks go deeper. The outputs of different blocks are merged into the final reconstruction. We adopt recursive convolution to build each block and apply supervision to all intermediate results, which enable our model to achieve promising performance on synthetic and real-world data while using fewer parameters than previous required. ResGuideNet is detachable to meet different rainy conditions. For images with light rain streaks and limited computational resource at test time, we can obtain a decent performance even with several building blocks. Experiments validate that ResGuideNet can benefit other low- and high-level vision tasks.